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Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation

Preliminary results published at ICDT’23, Ioannina, Greece
(Keppeler, Schwentick, and S. 2023)

2. Parallel-Correctness and -Boundedness of Datalog Queries

ICDT’19, Lisbon, Portugal (Neven, Schwentick, S., and Vandevoort 2019)

3. Structurally Simple Rewritings

ICDT’22, Edinburgh, UK (Geck, Keppeler, Schwentick, and S. 2022)
LMCS Journal (Geck, Keppeler, Schwentick, and S. 2023)

data complexity

static analysis

static analysis

static analysis
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Query Evaluation

evaluation algorithm for QQ : R on S
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R
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Q

Random Access Machine (RAM)
input relations query result

relational algebra query

I running time =̂ number of computation stepsI runs in constant time
I total number of computation steps?

Work: Sum of computation steps of all processors
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Constant-Time Parallel Query Evaluation
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Constant-Time Parallel Evaluation

Q
relational algebra

query

ϕ
first-order
formula

P1 P2 P3 P4 P5

P6 P7 P8 P9 P10…
Pm−4 Pm−3 Pm−2 Pm−1 Pm

Shared Memory

constant-time
parallel algorithm

Codd (1972) Immerman (1989, 1999)

I The resulting algorithm requires work O(nk)
where k is the number of variables of the formula ϕ (Immerman 1989, 1999).

I Not work-optimal for many classes of queries

Definition
A constant time parallel algorithm is work-optimal if
its work matches the running time of the best sequential algorithm.

Goal
Start exploration of more work-efficient evaluation algorithms for PRAMs
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Overview of Main Results

Q Processor

Memory

query class classic, sequential
RAM (known)

constant time,
PRAM

assumptions/
data structures

semi-join algebra time O(IN) work O(IN2)work O(IN)

work-optimal
no assumptionsgiven a dictionary

for database values

acyclic conjunctive
queries

time
O(IN ·OUT)

work
O((IN ·OUT)1+ε)

work-efficient

given a dictionary
for database values

natural join queries
(worst-case framework)

time
O(

∏m
i=1 |Ri |xi + IN)

work
O(

(∏m
i=1 |Ri |xi + IN

)1+ε
)

work-efficient

given a dictionary
for database values

P1 P2 P3 P4 P5
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Shared Memory
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Dictionaries
I dictionary-based compressed databases
I for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example

Title Year

True Romance 1993

Jurassic Park 1993

The Godfather 1972

Movies
Title Year

1 4

2 4

3 5

Movies
Key Value

1 True Romance

2 Jurassic Park

3 The Godfather

4 1993

5 1972

Dictionary

+

I we require that all numbers are of size at most O(|D|) for a database D
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Settings for Constant-Time Parallel Evaluation

Dictionary Setting
I A dictionary for the database is available

General Setting
I A single processor can test for equivalence in constant time
I Lemma: A dictionary can be computed in constant-time with work O(IN2).

Ordered Setting
I There is a linear order on the domain values
I A single processor can test for less than in constant time
I Lemma: For every ε > 0, a dictionary can be computed in constant-time with work
O(IN1+ε), given suitably ordered arrays for the database relations.
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O(IN1+ε), given suitably ordered arrays for the database relations.
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Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation
Preliminary results published at ICDT’23, Ioannina, Greece
(Keppeler, Schwentick, and S. 2023)

2. Parallel-Correctness and -Boundedness of Datalog Queries
ICDT’19, Lisbon, Portugal (Neven, Schwentick, S., and Vandevoort 2019)

3. Structurally Simple Rewritings

ICDT’22, Edinburgh, UK (Geck, Keppeler, Schwentick, and S. 2022)
LMCS Journal (Geck, Keppeler, Schwentick, and S. 2023)

data complexity

static analysis

static analysis

static analysis
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Distributed Evaluation

Query
I transitive closure T
I Datalog program

T (x , y)← E(x , y)
T (x , z)← T (x , y), E(y , z)

I recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
. . . . . .global

database

. . .local
evaluation

. . .local
evaluation

...... ......

. . .result

Server 2Server 1 Server n

. . .

. . .
. . . . . .

Massively Parallel
Communication (MPC)

model
(Beame, Koutris, and Suciu 2017)

. . .

∪ ∪ ∪
?
=

initial distribution

communication
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The Parallel-Correctness Problem
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The Parallel-Correctness Problem

Parallel-Correctness Problem
Input:
I Datalog program
I distribution policy
I communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?

Theorem (Ketsman, Albarghouthi, and Koutris 2018)
Parallel-correctness for general Datalog programs is
undecidable.

I Even for “simple” policies:
I only two servers
I all but one relations are distributed to both

servers
I no communication

I Is there a fragment of Datalog for which
parallel-correctness is decidable?

I How to specify distribution and communication
policies?
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Basics

Relational databases

E(a, b, c)︸ ︷︷ ︸
fact

,E(a, d , g),F (a, d), . . .

Datalog programs consist of rules

T (x , y)︸ ︷︷ ︸
head

← E(x , y , z),
atom︷ ︸︸ ︷

R(x , v)︸ ︷︷ ︸
body

.

I relation symbol of the head does
not occur in the database

I rules can be recursive
I no negation
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Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
… and containment is undecidable for general Datalog

general Datalog

frontier-guarded
Datalog

Each rule has a guard atom
I contains all head variables
I relation symbol from database

Example:
T (x , y)← E(x, y, z),F (y , v)

monadic
Datalog

only unary
head atoms

Example:
R(x)← S(x),E(y , z, u)

)

(

rewrite

Containment is decidable for monadic Datalog

and frontier-guarded Datalog
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Distribution Policies
Idea: Use hash functions h1, . . . , hk fast, evenly distribution

E(a, d , g)
E(a, b, c)

F (a, d)
E(a, e, g)

E(a, b, c)
F (a, d)

E(a, d , g)
E(a, e, g)

Server 1

Server 2

h5(c, a) = 1

h5(g , a) = 2

h1(a, d
, d) = 1

h5(g , a) = 2

Here: Hash policy schemes
I describes how hash functions are applied
I defines class of hash functions
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Communication Policies

Data-Moving Distribution Constraints

R(x , y)@λ,S(y)@κ︸ ︷︷ ︸
body

→ R(x , y)@κ︸ ︷︷ ︸
head

Both R(x , y) and κ occur in the body.
I No creation of facts
I No creation of servers

R(a, b)
S(b)

R(a, b)
Server 1 Server 2
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Parallel-Correctness: Main Results
Datalog fragment hash policy schemes and

data-moving distribution constraints

frontier-guarded

monadic

?mainly contributed by my co-authors to the ICDT’19 paper
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Parallel-Correctness: Main Results
Datalog fragment hash policy schemes and

data-moving distribution constraints
…with polynomial communication property
syntactical fragment changed semantics

frontier-guarded undecidable?

monadic undecidable?

Polynomial Communication Property
I The amount of communication without any

local computation in between is bounded polynomially

?mainly contributed by my co-authors to the ICDT’19 paper
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Parallel-Correctness: Main Results
Datalog fragment hash policy schemes and

data-moving distribution constraints
…with polynomial communication property
syntactical fragment changed semantics

frontier-guarded undecidable? 2ExpTime-complete 2ExpTime-complete

monadic undecidable?

Theorem
Parallel-correctness for frontier-guarded Datalog,
I hash policy schemes, and
I data-moving distribution constraints
I with the polynomial communication property

is 2ExpTime-complete.
?mainly contributed by my co-authors to the ICDT’19 paper

Christopher Spinrath – Query Evaluation Revised 16
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Reminder: Every monadic Datalog query can be trans-
lated into an equivalent frontier-guarded Datalog
query.
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Parallel-Boundedness

Parallel-Boundedness
There is a bound r ∈ N such that
I for every database
I no new facts are computed
I after r communication rounds.

I Local computations may be unbounded!

Theorem
Parallel-boundedness for frontier-guarded Datalog programs,
I hash policy schemes, and
I data-moving distribution constraints with the polynomial communication property

that are parallel-correct is 2ExpTime-complete.
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Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation
Preliminary results published at ICDT’23, Ioannina, Greece
(Keppeler, Schwentick, and S. 2023)

2. Parallel-Correctness and -Boundedness of Datalog Queries
ICDT’19, Lisbon, Portugal (Neven, Schwentick, S., and Vandevoort 2019)

3. Structurally Simple Rewritings
ICDT’22, Edinburgh, UK (Geck, Keppeler, Schwentick, and S. 2022)
LMCS Journal (Geck, Keppeler, Schwentick, and S. 2023)

data complexity

static analysis

static analysis

static analysis
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Rewritings

relational database

1 2

2 3

R

2 1

3 1

S

1 4

2 5

T

no direct
access

1 1

2 1

V1

1 4

V2

View
V1(x , z)← R(x , y),S(y , z)

View
V2(z,w)← S(y , z),T (z,w)

1 4

2 4

H
H(x ,w)← ??

??

1 4

2 4

H
Query H(x ,w)← R(x , y), S(y , z), T (z,w)

!
=

Conjunctive Query
single, non-recursive rule
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The Rewriting Problem

database
D

V(D) ...
views V

Q ′(V(D))
rewriting Q ′?

Q(D)
query Q

=

The Rewriting Problem
Input:
I conjunctive query Q
I set V of views

Question:
Is there a rewriting for Q
with respect to V?

Theorem (Levy et al. 1995)
The rewriting problem for
I conjunctive queries and
I views defined by conjunctive queries

is NP-complete.

→ Restrict everything to structurally simple
queries
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Acyclic Conjunctive Queries
For acyclic queries many problems are in polynomial time: containment, evaluation, …

Definition
A conjunctive query is acyclic if it has a join tree

Example
H(x , y)← R(x , y),S(y , z),F (z),E(x),T (z,w) is acyclic

R(x , y)

E(x) S(y , z)

F (z) T (z,w)

For every variable:
the induced subgraph is connected
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Complexity of the Acyclic Rewriting Problem

database
D

V(D) ...
acyclic views V

Q ′(V(D))
acyclic rewriting Q ′?

Q(D)
acyclic query Q

=

If the query is acyclic, we would like
the rewriting to be acyclic as well
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Complexity of the Acyclic Rewriting Problem

database
D

V(D) ...
acyclic views V

Q ′(V(D))
acyclic rewriting Q ′?

Q(D)
acyclic query Q

=

If the query is acyclic, we would like
the rewriting to be acyclic as well

Theorem
If the query is acyclic and there is any
rewriting, there is an acyclic rewriting.
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Complexity of the Acyclic Rewriting Problem

database
D

V(D) ...
acyclic views V

with head arity ≤ k

Q ′(V(D))
acyclic rewriting Q ′?

Q(D)
acyclic query Q

=

If the query is acyclic, we would like
the rewriting to be acyclic as well

Theorem
For every k ≥ 0, the acyclic rewriting problem for
I acyclic queries and
I views defined by acyclic queries with head arity at most k

is in polynomial time.
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Rewritings: Main Results

Views Query Rewriting Restriction
of views

arity of database relations

is ≤ k, k ∈ N0 unbounded

acyclic acyclic acyclic no restriction NP-complete for k ≥ 3

acyclic acyclic acyclic head arity ≤ `
` ∈ N0

polynomial time

acyclic acyclic acyclic weak head arity ≤ `
` ∈ N0

polynomial time

free-connex
acyclic acyclic acyclic no restriction polynomial time open

hierarchical hierarchical hierarchical no restriction NP-complete for k ≥ 3

q-hierarchical q-hierarchical q-hierarchical no restriction polynomial time open
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Conclusion

1. Work-Efficient Constant-Time Parallel Query Evaluation
I Transforming classical algorithms into constant-time parallel algorithms

2. Parallel-Correctness and -Boundedness of Datalog Queries
I Deciding whether query evaluation is correct

3. Structurally Simple Rewritings
I Preserving structural properties of queries under access restriction

data complexity

static analysis

static analysis
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