Query Evaluation Revised: Parallel, Distributed, via Rewritings

Doctoral Defence

Christopher Spinrath

TU Dortmund University

January 29, 2024

@@@@ This presentation is licensed under the
e Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license
Christopher Spinrath — Query Evaluation Revised 1

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Query Evaluation

Classical Query Evaluation (simplified)

b
o —
ab -
User Database

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

Classical Query Evaluation (simplified)

query Q
ab -
User Database

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

Classical Query Evaluation (simplified)
query Q

- _/
User Database

result Q(D)

Christopher Spinrath — Query Evaluation Revised

Query Evaluation
Query Evaluation (simplified)
queries Q1,..., Q,

- _/
User Database

results Q:(D), ..., Qn(D)

Examples for Circumstances

» Multiple input queries

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

Query Evaluation (simplified)
query Q

. /\
o~ ==

result Q(D)

Distributed database

Examples for Circumstances
» Multiple input queries
» Distributed database(s)

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

Query Evaluation (simplified)

query Q

User Database
result Q(D) access restriction

Examples for Circumstances
» Multiple input queries
» Distributed database(s)

» Access Restrictions

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

Query Evaluation (simplified)

query Q

User Database
result Q(D) access restriction

Examples for Circumstances
» Multiple input queries
» Distributed database(s)
» Access Restrictions

> ...

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

Query Evaluation (simplified)

query Q

User Database
result Q(D) access restriction

Examples for Circumstances Questions
» Multiple input queries » Are methods from the classical setting still suitable?
» Distributed database(s) » Algorithms, Correctness, Complexity, ...

» Access Restrictions

> ...

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

Query Evaluation (simplified)

query Q

User Database
result Q(D) access restriction

Examples for Circumstances Questions
» Multiple input queries » Are methods from the classical setting still suitable?
» Distributed database(s) » Algorithms, Correctness, Complexity, ...
» Access Restrictions » What is considered “suitable”?
> ...

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

Query Evaluation (simplified)

query Q

User Database
result Q(D) access restriction

Examples for Circumstances Questions
» Multiple input queries » Are methods from the classical setting still suitable?
» Distributed database(s) » Algorithms, Correctness, Complexity, ...
» Access Restrictions » What is considered “suitable”?
> ... » (How) can methods be adapted?

Christopher Spinrath — Query Evaluation Revised

Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation

2. Parallel-Correctness and -Boundedness of Datalog Queries

3. Structurally Simple Rewritings

Christopher Spinrath — Query Evaluation Revised 3

Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation

data Comp\ex'\W

2. Parallel-Correctness and -Boundedness of Datalog Queries

atic analve'®

3. Structurally Simple Rewritings

static analys's

Christopher Spinrath — Query Evaluation Revised

Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation

Preliminary results published at ICDT'23, loannina, Greece Comp\ex‘\ty
(Keppeler, Schwentick, and S. 2023) data

Christopher Spinrath — Query Evaluation Revised 3

Query Evaluation

R:Rx S

relational algebra query

Christopher Spinrath — Query Evaluation Revised 4

Query Evaluation

R:Rx S evaluation algorithm for @

relational algebra query

Christopher Spinrath — Query Evaluation Revised 4

Query Evaluation

R:Rx S evaluation algorithm for @

relational algebra query

Processor

Memory

Random Access Machine (RAM)

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

R:Rx S evaluation algorithm for @

relational algebra query

R) Q
A S B _C Processor AL B C
5 2 2 7 5 2 7
3 4 2 1 Memory 5 2 1
input relations query result

Random Access Machine (RAM)

Christopher Spinrath — Query Evaluation Revised

Query Evaluation

R:Rx S evaluation algorithm for @

relational algebra query

R) Q
A S B _C Processor AL B C
5 2 2 7 5 2 7
3 4 2 1 Memory 5 2 1
input relations query result

Random Access Machine (RAM)

» running time = number of computation steps

Christopher Spinrath — Query Evaluation Revised

Constant-Time Parallel Query Evaluation

constant-time parallel

Q:RxS evaluation algorithm for Q

relational algebra query

R S [l e lrle Q
a o Ml s Po L P pe 1 po] Piol A B C

52| 2|7 DD 527

314 2 11 Shared Memory 512 |1

input relations query result
Parallel Random Access Machine (PRAM)

Christopher Spinrath — Query Evaluation Revised

Constant-Time Parallel Query Evaluation

constant-time parallel

Q:RxS evaluation algorithm for Q

relational algebra query

R S [l e lrle Q
a o Ml s Po L P pe 1 po] Piol A B C

52| 2|7 DD 527

314 2 11 Shared Memory 512 |1

input relations query result
Parallel Random Access Machine (PRAM)

» runs in constant time
» total number of computation steps?

Christopher Spinrath — Query Evaluation Revised

Constant-Time Parallel Query Evaluation

constant-time parallel

Q:RxS evaluation algorithm for Q

relational algebra query

R S [l e lrle Q
a o Ml s Po L P pe 1 po] Piol A B C

52| 2|7 DD 527

314 2 11 Shared Memory 512 |1

input relations query result
Parallel Random Access Machine (PRAM)

Work: Sum of computation steps of all processors

Christopher Spinrath — Query Evaluation Revised

Constant-Time Parallel Evaluation

o

relational algebra
query

Christopher Spinrath — Query Evaluation Revised 5

Constant-Time Parallel Evaluation

Q ©

relational algebra Codd (1972) first-order
query formula

Christopher Spinrath — Query Evaluation Revised 5

Constant-Time Parallel Evaluation

¥

relational algebra Codd (1972) first-order Immerman (1989, 1999) constant-time
query formula parallel algorithm

Christopher Spinrath — Query Evaluation Revised 5

Constant-Time Parallel Evaluation

Q ©

relational algebra Codd (1972) first-order Immerman (1989, 1999) constant-time
query formula parallel algorithm

» The resulting algorithm requires work O(n*)
where k is the number of variables of the formula ¢ (Immerman 1989, 1999).

Christopher Spinrath — Query Evaluation Revised 5

Constant-Time Parallel Evaluation

Q ©

relational algebra

Codd (1972) first-order
query

Immerman (1989, 1999) constant-time
formula

parallel algorithm

» The resulting algorithm requires work O(nk)
where k is the number of variables of the formula ¢ (Immerman 1989, 1999).
» Not work-optimal for many classes of queries

Christopher Spinrath — Query Evaluation Revised 5

Constant-Time Parallel Evaluation

Q ©

relational algebra

Codd (1972) first-order
query

Immerman (1989, 1999) constant-time
formula

parallel algorithm

» The resulting algorithm requires work O(nk)
where k is the number of variables of the formula ¢ (Immerman 1989, 1999).
» Not work-optimal for many classes of queries

A constant time parallel algorithm is work-optimal if
its work matches the running time of the best sequential algorithm.

Christopher Spinrath — Query Evaluation Revised

Overview of Main Results

query class classic, sequential constant time, assumptions/
RAM (known) PRAM data structures

Christopher Spinrath — Query Evaluation Revised 6

Overview of Main Results

OO
Processor BBBBW
OO
classic, sequential constant time assumptions/
uery class !
query RAM (known) PRAM data structures
semi-join algebra time O(IN) work O(IN?) no assumptions

Christopher Spinrath — Query Evaluation Revised 6

Overview of Main Results

o

classic, sequential constant time assumptions/
| ,
query class RAM (known) PRAM data structures
semi-join algebra time O(IN) work O(IN) D B CHSHIETR)

for database values

Christopher Spinrath — Query Evaluation Revised 6

Overview of Main Results

query class

semi-join algebra

Christopher Spinrath — Query Evaluation Revised

Processor

Memory

classic, sequential

RAM (known)

time O(IN)

GO
[7o Lo 17 1ro Lrod

[Pr—dPn—slPm—Pni] Pn §
Shared Memory

constant time,
PRAM

assumptions/
data structures

given a dictionary

k O(IN i
work O()k opt'\f“afr database values
WOk~

Overview of Main Results

o

query class

semi-join algebra

acyclic conjunctive
queries

Christopher Spinrath — Query Evaluation Revised

classic, sequential

RAM (known)

time O(IN)

time
O(IN - 0UT)

constant time,
PRAM

assumptions/
data structures

) given a dictionary

k O(IN
work O(opumafdr database values
worK~

work
O((IN - OUT)HE)

given a dictionary
for database values

Overview of Main Results

o

query class

semi-join algebra

acyclic conjunctive
queries

Christopher Spinrath — Query Evaluation Revised

classic, sequential

RAM (known)

time O(IN)

time
O(IN - 0UT)

constant time,
PRAM

assumptions/
data structures

) given a dictionary

k O(IN
work O(opumafdr database values
worK~

work given a dictionary

O((IN - OUT)'*%) _—for database values

Overview of Main Results

o

classic, sequential
query class

RAM (known)

semi-join algebra time O(IN)
acyclic conjunctive time

queries O(IN - 0UT)
natural join queries time

(worst-case framework) O([]", |Ri| + IN)

Christopher Spinrath — Query Evaluation Revised

constant time,
PRAM

assumptions/
data structures

) given a dictionary

k O(IN
work O(opumafdr database values
worK~

work given a dictionary

O((IN - OUT)'*%) _—for database values

Overview of Main Results

o

classic, sequential
query class

RAM (known)

semi-join algebra time O(IN)
acyclic conjunctive time

queries O(IN - 0UT)
natural join queries time

constant time,
PRAM

assumptions/
data structures

work O(IN) given a dictionary
" optimafar database values
work-

I

work given a dictionary

O((IN - OUT)'*%) _—for database values
\4\10\'\(—eﬁ'\c‘.\e“t

work given a dictionary

|

(worst-case framework) O([]7, |R:[¥ +IN) O((IT", |Ri|* + IN Ha_ or database values

Christopher Spinrath — Query Evaluation Revised

Dictionaries

» dictionary-based compressed databases

» for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Christopher Spinrath — Query Evaluation Revised 7

Dictionaries

» dictionary-based compressed databases

» for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example

Movies
Title Year

True Romance 1993

Jurassic Park 1993

The Godfather | 1972

Christopher Spinrath — Query Evaluation Revised

Dictionaries

» dictionary-based compressed databases

» for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example
Movies
Title Year
True Romance | 1993
Jurassic Park 1993
The Godfather | 1972

Christopher Spinrath — Query Evaluation Revised

Movies
Title Year
1 4
2 4
3 5

Dictionary
Key Value
1 True Romance
2 Jurassic Park
3 The Godfather
4 1993
5 1972

Dictionaries

» dictionary-based compressed databases

» for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example
Movies
Title Year
True Romance | 1993
Jurassic Park 1993
The Godfather | 1972

Movies
Title Year
1 4
2 4
3 5

Dictionary
Key Value
1 True Romance
2 Jurassic Park
3 The Godfather
4 1993
5 1972

» we require that all numbers are of size at most O(|D|) for a database D

Christopher Spinrath — Query Evaluation Revised

Dictionaries

» dictionary-based compressed databases

> for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example
Movies
Title Year
1 4
2 4
3 5

» we require that all numbers are of size at most O(|D|) for a database D

Christopher Spinrath — Query Evaluation Revised

Settings for Constant-Time Parallel Evaluation

Dictionary Setting
» A dictionary for the database is available

Christopher Spinrath — Query Evaluation Revised 8

Settings for Constant-Time Parallel Evaluation

Dictionary Setting
» A dictionary for the database is available

General Setting
P A single processor can test for equivalence in constant time

» Lemma: A dictionary can be computed in constant-time with work O(IN?).

Christopher Spinrath — Query Evaluation Revised 8

Settings for Constant-Time Parallel Evaluation

Dictionary Setting

» A dictionary for the database is available

General Setting
P A single processor can test for equivalence in constant time

» Lemma: A dictionary can be computed in constant-time with work O(IN?).

Ordered Setting
» There is a linear order on the domain values
» A single processor can test for less than in constant time

» Lemma: For every € > 0, a dictionary can be computed in constant-time with work
O(IN'T€), given suitably ordered arrays for the database relations.

Christopher Spinrath — Query Evaluation Revised 8

Settings

2. Parallel-Correctness and -Boundedness of Datalog Queries

ICDT'19, Lisbon, Portugal (Neven, Schwentick, S., and Vandevoort 2019) -

Christopher Spinrath — Query Evaluation Revised

Distributed Evaluation

» transitive closure T

» Datalog program

T(x,y) < E(x,y)
T(x,2) < T(x,y), E(y,2)

» recursive evaluation
(fixed point computation)

Christopher Spinrath — Query Evaluation Revised

global
database

Distributed Evaluation

» transitive closure T

» Datalog program

T(x,y) < E(x,y)
T(x,2) < T(x,y), E(y,2)

» recursive evaluation
(fixed point computation)

Christopher Spinrath — Query Evaluation Revised

global
database

initial distribution

Server 1

Server 2

Server n

Distributed Evaluation

» transitive closure T

» Datalog program

T(x,y) < E(x,y)
T(x,2) < T(x,y), E(y,2)

» recursive evaluation
(fixed point computation)

Christopher Spinrath — Query Evaluation Revised

global
database

initial distribution

local
evaluation

Server 1

Server 2

Server n

Distributed Evaluation global

database

initial distribution

.. local (=2
> transitive closure T evaluation "4 - (:1
» Datalog program ¥}< S
communication
0 A y
T(x,y) « E(x,y) v i
T(X,Z) < T(Xa)/)a E(Yaz) ~, .\{o}. ., Q
» recursive evaluation
(fixed point computation)
Server 1 Server 2 Server n

Christopher Spinrath — Query Evaluation Revised 10

Distributed Evaluation global

database

initial distribution

.. local (=2
> transitive closure T evaluation "4 - (:1
» Datalog program ¥}< S
communication
0 A y
T(Xa)/)(_E(Xay) local IXI I\ 3
T(x,2) & Tooy), E(rrz) ovatin | R S .
» recursive evaluation
(fixed point computation)
Server 1 Server 2 Server n

Christopher Spinrath — Query Evaluation Revised 10

Distributed Evaluation global

database

initial distribution

.- local | 7d
P transitive closure T evaluation i/ - (:)
» Datalog program ¥}< S
communication
A A y
T(x,y) & E(x,y) o [R |
T(x,2) & Tooy), E(rrz) ovatin | R 5 .
» recursive evaluation : :
(fixed point computation)
Server 1 Server 2 Server n

Christopher Spinrath — Query Evaluation Revised 10

Distributed Evaluation global

database

initial distribution

=
*—>0
» transitive closure T ev;:)uc:t'ion 14 " (:)
» Datalog program ¥}< S
communication
0 A y
T(x,y) + E(x,y) o [N> |
T(x,2) & Tooy), E(rrz) ovatin | R 5 .
P recursive evaluation : :

(fixed point computation)

Server 1 Server 2 Server n

Christopher Spinrath — Query Evaluation Revised 10

Distributed Evaluation global

database

initial distribution

=
*—0
> transitive closure T oeal "4 " (:)
» Datalog program yx D
communication
0 A y
T(va)<_E(Xay) I | *— L
ocal ¢§I ¢¥ ﬁ
T(X’ Z) <_ T(X7.y)’ E(.y7 z) evaluation ¢ ® ° ./. .\. ‘(.
P recursive evaluation
(fixed point computation)
result U %. U-
®

Server 1 Server 2 Server n

Christopher Spinrath — Query Evaluation Revised

Distributed Evaluation

Massively Parallel
Communication (MPC)
model
(Beame, Koutris, and Suciu 2017)

Christopher Spinrath — Query Evaluation Revised

global
database

initial distribution

e —
local a—e
! J
evaluation i‘/ ‘(./ @
L e J
communication X
e — e—
local IXI i? L ﬁ
evaluation o. \4 C ./. '\. (.
e * e * ° J
—
result U %. U-
o
Server 1 Server 2 Server n

The Parallel-Correctness Problem

Christopher Spinrath — Query Evaluation Revised

local
evaluation

communication

local
evaluation

result

Server 1

\i/ -
¥ R

: e —
B

Server 2

Server n

The Parallel-Correctness Problem

Parallel-Correctness Problem

Input:
» Datalog program
» distribution policy

» communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?

Christopher Spinrath — Query Evaluation Revised

The Parallel-Correctness Problem

Parallel-Correctness Problem

Input:
» Datalog program
» distribution policy

» communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?

Christopher Spinrath — Query Evaluation Revised

Theorem (Ketsman, Albarghouthi, and Koutris 2018)

Parallel-correctness for general Datalog programs is
undecidable.

The Parallel-Correctness Problem

Parallel-Correctness Problem Theorem (Ketsman, Albarghouthi, and Koutris 2018)

Input: Parallel-correctness for general Datalog programs is
» Datalog program undecidable.
» distribution policy » Even for “simple” policies:
» communication policy » only two servers
» all but one relations are distributed to both
Question: Servers

» no communication
Do distributed and global evaluation

yield the same result for all databases?

Christopher Spinrath — Query Evaluation Revised

The Parallel-Correctness Problem

Parallel-Correctness Problem Theorem (Ketsman, Albarghouthi, and Koutris 2018)

Input: Parallel-correctness for general Datalog programs is
» Datalog program undecidable.
» distribution policy » Even for “simple” policies:
» communication policy » only two servers
» all but one relations are distributed to both
Question: Servers

» no communication
Do distributed and global evaluation

yield the same result for all databases? » Is there a fragment of Datalog for which
parallel-correctness is decidable?

» How to specify distribution and communication
policies?

Christopher Spinrath — Query Evaluation Revised 11

Basics

Relational databases

E(a, b,¢c),E(a, d,g),F(a,d),. ..
————

fact

Christopher Spinrath — Query Evaluation Revised

Basics

Relational databases Datalog programs consist of rules
E(a, b,c), E(a,d, g), F(a,d),... PR
fact T(X7y)<_E(X7y7Z)7R(X7V)-
head body

» relation symbol of the head does
not occur in the database

» rules can be recursive

» no negation

Christopher Spinrath — Query Evaluation Revised

Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
. and containment is undecidable for general Datalog

Christopher Spinrath — Query Evaluation Revised

Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
. and containment is undecidable for general Datalog
general Datalog

)

monadic only unary Example:
Datalog head atoms R(x) < S(x), E(y,z, u)

Containment is decidable for monadic Datalog

Christopher Spinrath — Query Evaluation Revised

Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
. and containment is undecidable for general Datalog
general Datalog

|

frontier-guarded Each rule has a guard atom

. . Example:
» contains all head variables P

W T(x, E(x, F
Deralieg » relation symbol from database (%,y) < E(xy,2), Fly,v)
monadic only unary Example:

Datalog head atoms R(x) < S(x), E(y,z, u)

Containment is decidable for monadic Datalog and frontier-guarded Datalog

Christopher Spinrath — Query Evaluation Revised

Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
. and containment is undecidable for general Datalog
general Datalog

|

frontier-guarded Each rule has a guard atom

. . Example:
» contains all head variables P

W T(x,y) < E(x, F
DatAalog » relation symbol from database (%) (x,y,2), F(y,v)
rewrite
monadic only unary Example:
Datalog head atoms R(x) < S(x), E(y,z, u)

Containment is decidable for monadic Datalog and frontier-guarded Datalog

Christopher Spinrath — Query Evaluation Revised

Distribution Policies

Idea: Use hash functions hy, ..., hy

—
E(a,b,c)
E(a,d, g)

F(a,d)
E(a,e, g)

. 7

Christopher Spinrath — Query Evaluation Revised

fast, evenly distribution

Server 1

Server 2

Distribution Policies

Idea: Use hash functions hy, ..., hy

—
E(a,b,c)
E(a,d, g)

F(a,d)
E(a,e, g)

. 7

Christopher Spinrath — Query Evaluation Revised

fast, evenly distribution

Server 1

Server 2

Distribution Policies

Idea: Use hash functions hy, ..., h, fast, evenly distribution

—
E(a,b,c)
E(a,d,g)

F(a,d)
E(a,e, g)

. 7

Server 1

Server 2

Christopher Spinrath — Query Evaluation Revised 14

Distribution Policies

Idea: Use hash functions hy, ..., hy

S—
E(a,b,c)
E(a,d,g)

F(a,d) —
E(a,e, g)

. 7

Christopher Spinrath — Query Evaluation Revised

fast, evenly distribution

Server 2

Distribution Policies

Idea: Use hash functions hy,...

Christopher Spinrath — Query Evaluation Revised

7hk

fast, evenly distribution

Server 2

Distribution Policies

Idea: Use hash functions hy, ..., h, fast, evenly distribution

hs(g,a) = o
Here: Hash policy schemes
» describes how hash functions are applied

» defines class of hash functions

Christopher Spinrath — Query Evaluation Revised

Server 2

Communication Policies

Data-Moving Distribution Constraints

R(x,y)aA, S(y)ar — R(x, y)ar

body head

R(a, b)

Server 1

Christopher Spinrath — Query Evaluation Revised

Server 2

Communication Policies

Data-Moving Distribution Constraints

R(x,y)aA, S(y)ar — R(x, y)ar

body head

Server 1

Christopher Spinrath — Query Evaluation Revised

Server 2

Communication Policies

Data-Moving Distribution Constraints

R(x,y)aA, S(y)ar — R(x, y)ar

body head

Both R(x,y) and x occur in the body.
» No creation of facts

» No creation of servers

Server 1

Christopher Spinrath — Query Evaluation Revised

Server 2

Parallel-Correctness: Main Results

hash policy schemes and

Datalog fragment . R .
g reg data-moving distribution constraints

frontier-guarded

monadic

Christopher Spinrath — Query Evaluation Revised

Parallel-Correctness: Main Results

hash policy schemes and

Datalog fragment . o .
g reg data-moving distribution constraints

frontier-guarded undecidable*

monadic undecidable*

*mainly contributed by my co-authors to the ICDT'19 paper

Christopher Spinrath — Query Evaluation Revised

Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property

Datalog fragment . R . . .
g reg data-moving distribution constraints syntactical fragment changed semantics

frontier-guarded undecidable*

monadic undecidable*

Polynomial Communication Property

» The amount of communication without any
local computation in between is bounded polynomially

*mainly contributed by my co-authors to the ICDT'19 paper

Christopher Spinrath — Query Evaluation Revised 16

Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property
Datalog fragment . R . . .
data-moving distribution constraints syntactical fragment changed semantics
frontier-guarded undecidable* 2ExpTime-complete 2ExpTime-complete
monadic undecidable*

Parallel-correctness for frontier-guarded Datalog,

» hash policy schemes, and
» data-moving distribution constraints
» with the polynomial communication property

is 2ExpTime-complete.
*mainly contributed by my co-authors to the ICDT'19 paper

Christopher Spinrath — Query Evaluation Revised 16

Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property

Datalog fragment . R . . .
g reg data-moving distribution constraints syntactical fragment changed semantics

frontier-guarded undecidable* 2ExpTime-complete 2ExpTime-complete

monadic undecidable* in 2ExpTime in 2ExpTime

Reminder: Every monadic Datalog query can be trans-
lated into an equivalent frontier-guarded Datalog

query.

*mainly contributed by my co-authors to the ICDT'19 paper

Christopher Spinrath — Query Evaluation Revised

Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property

Datalog fragment . R . . .
g reg data-moving distribution constraints syntactical fragment changed semantics

frontier-guarded undecidable* 2ExpTime-complete 2ExpTime-complete

monadic undecidable* irMe

— _—

Reminder: Every monadic Datalog query can be trans-
lated into an equivalent frontier-guarded Datalog

query.

*mainly contributed by my co-authors to the ICDT'19 paper

Christopher Spinrath — Query Evaluation Revised

Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property

Datalog fragment . R . . .
g reg data-moving distribution constraints syntactical fragment changed semantics

frontier-guarded undecidable* 2ExpTime-complete 2ExpTime-complete

monadic undecidable* open undecidable*

Reminder: Every monadic Datalog query can be trans-
lated into an equivalent frontier-guarded Datalog

query.

*mainly contributed by my co-authors to the ICDT'19 paper

Christopher Spinrath — Query Evaluation Revised

Parallel-Boundedness

Parallel-Boundedness

There is a bound r € N such that

» for every database
» no new facts are computed

» after r communication rounds.

» Local computations may be unbounded!

Christopher Spinrath — Query Evaluation Revised 17

Parallel-Boundedness

Parallel-Boundedness

There is a bound r € N such that

» for every database
» no new facts are computed

» after r communication rounds.

» Local computations may be unbounded!

Parallel-boundedness for frontier-guarded Datalog programs,

» hash policy schemes, and
» data-moving distribution constraints with the polynomial communication property

that are parallel-correct is 2ExpTime-complete.

Christopher Spinrath — Query Evaluation Revised 17

Settings

3. Structurally Simple Rewritings
ICDT'22, Edinburgh, UK (Geck, Keppeler, Schwentick, and S. 2022)

LMCS Journal (Geck, Keppeler, Schwentick, and S. 2023)

Christopher Spinrath — Query Evaluation Revised

Rewritings

1| 4
2 |5
L

relational database

Christopher Spinrath — Query Evaluation Revised 19

Rewritings

Query H(x,w) < R(x,y), S(y,2), T(z,w)

Conjunctive Query
single, non-recursive rule

1| 4
2 |5
L

relational database

Christopher Spinrath — Query Evaluation Revised 19

Rewritings
no direct
access

Query H(x,w) < R(x,y), S(y,2), T(z,w)

Conjunctive Query
single, non-recursive rule

1| 4
2 |5
L

relational database

Christopher Spinrath — Query Evaluation Revised 19

Rewritings

no direct
access
Query H(X,W)%R(X,y), 5(}/72)7 T(sz) 1 2
2 3
View
V1(x,z)<—R(x,y),S(y,z) R 2 1
3 1
View
V2(27 W) — 5(}/7 2)7 T(Z, W)
1| o4
2 5
« J
relational database

Christopher Spinrath — Query Evaluation Revised 19

Rewritings

no direct
access

Query H(x,w) < R(x,y), S(y,2), T(z,w)

Christopher Spinrath — Query Evaluation Revised

View
V1(X,Z) A R(va)v S(y,Z)

View

\ 4

1 1
2 1
1 4

1 4
2 5
«

relational database

19

Rewritings

no direct
access

Query H(x,w) < R(x,y), S(y,2), T(z,w)

Christopher Spinrath — Query Evaluation Revised

View
V1(X,Z) A R(va)v S(y,Z)

View

\ 4

1 4
2 5
«

relational database

19

Rewritings

no direct
access

Query H(x,w) < R(x,y), S(y,2), T(z,w)

H(x,w) < 7?7

7

Christopher Spinrath — Query Evaluation Revised

View
V1(X,Z) A R(va)v S(y,Z)

View

\ 4

1|1
2 |1
1| 4
L

1 4
2 5
«

relational database

19

Rewritings

no direct
1 Y e e T e I - > 1 2
2 | 4 2|3
—

V1(x,z)<—R(x,y),S(y,z) 2 1

1 1 >
H(x,w) < 7?7 N 5 1 3 1

77 View
1 A 1 4
L J 2 5
« J
relational database

Christopher Spinrath — Query Evaluation Revised 19

Rewritings

1 O it e
2 4
e —
!
Rewriting 1 1
H(x,w) < Vi(x,z), Va(z,w) 5 1
1 4 >
2 4
1 4
e

Christopher Spinrath — Query Evaluation Revised

no direct
access

View
V1(X,Z) A R(va)v S(y,Z)

View

1] 2
2 |3
J 121
31
1| o4
2 | s
——

relational database

19

The Rewriting Problem

Christopher Spinrath — Query Evaluation Revised

[—]
- >
| database
> D
views)V

The Rewriting Problem

rewriting Q'?

A

database
D

views)V

The Rewriting Problem

Input:
» conjunctive query @
> set V of views
Question:

Is there a rewriting for @
with respect to V?

Christopher Spinrath — Query Evaluation Revised

Y

The Rewriting Problem

query Q S —
Q(D) == =mmmmmme e eeeeeeeeeeeeeen e >
= o database
> D
Q'(V(D)) — - > V(D) H
rewriting Q7?7 >
views V
The Rewriting Problem Theorem (Levy et al. 1995)
Input: The rewriting problem for
» conjunctive query @ » conjunctive queries and
> set V of views » views defined by conjunctive queries
Question: is NP-complete.

Is there a rewriting for @
with respect to V?

Christopher Spinrath — Query Evaluation Revised

The Rewriting Problem

query Q S —
Q(D) == =mmmmmme e eeeeeeeeeeeeeen e >
= o database
> D
Q'(V(D)) — - > V(D) H
rewriting Q7?7 >
views V
The Rewriting Problem Theorem (Levy et al. 1995)
Input: The rewriting problem for
» conjunctive query @ » conjunctive queries and
> set V of views » views defined by conjunctive queries
Question: is NP-complete.

Is there a rewriting for @

I — Restrict everything to structurally simple

queries

Christopher Spinrath — Query Evaluation Revised

Acyclic Conjunctive Queries

For acyclic queries many problems are in polynomial time: containment, evaluation, ..

Christopher Spinrath — Query Evaluation Revised

Acyclic Conjunctive Queries

For acyclic queries many problems are in polynomial time: containment, evaluation, ..

Definition
A conjunctive query is acyclic if it has a join tree

Christopher Spinrath — Query Evaluation Revised

Acyclic Conjunctive Queries

For acyclic queries many problems are in polynomial time: containment, evaluation, ..

Definition
A conjunctive query is acyclic if it has a join tree

Example

H(x,y) < R(x,y),S(y,z), F(z), E(x), T(z,w) is acyclic

R(x,y)

/ \ For every variable:

E(x S(y,2) the induced subgraph is connected

/

)
F(z) T(z,w)

Christopher Spinrath — Query Evaluation Revised

Complexity of the Acyclic Rewriting Problem

acyclic query Q

| database

D

YY

Y

o) P
Q/(V(D)) acyclic rewriting Q'?; V(D)

If the query is acyclic, we would like
the rewriting to be acyclic as well

Christopher Spinrath — Query Evaluation Revised

acyclic views V

N
N

Complexity of the Acyclic Rewriting Problem
acyclic query Q

database
D

Q'(V(D)) >

acyclic rewriting Q'?

I
=
S
vy

acyclic views V

If the query is acyclic, we would like The acyclic rewriting problem for

the rewriting to be acyclic as well » acyclic queries and

» views defined by acyclic queries

is NP-complete.

N
N

Christopher Spinrath — Query Evaluation Revised

Complexity of the Acyclic Rewriting Problem

acyclic query Q —
Q(D) == =mmmmmmm e e >
= o | database
> D
"V(D > V(D :
Q (()) rewriting Q'? () " >

acyclic views V

The rewriting problem for
» acyclic queries and
» views defined by acyclic queries

is NP-complete.

Christopher Spinrath — Query Evaluation Revised

N
N

Complexity of the Acyclic Rewriting Problem
acyclic query Q

database
D

Q'(V(D)) >

acyclic rewriting Q'?

I
=
S
vy

acyclic views V

If the query is acyclic and there is any
rewriting, there is an acyclic rewriting.

Christopher Spinrath — Query Evaluation Revised

N
N

Complexity of the Acyclic Rewriting Problem

acyclic query Q —
Q(D) == =mmmmmmm e e >
= | database
> D
"V(D > V(D :
V(D) acyclic rewriting Q'? (D) >

acyclic views V
with head arity < k

For every k > 0, the acyclic rewriting problem for

» acyclic queries and
» views defined by acyclic queries with head arity at most k

is in polynomial time.

N
N

Christopher Spinrath — Query Evaluation Revised

Rewritings: Main Results

arity of database relations

Views Query Rewriting Rg?t\ﬁg\tl\'g”
is < k,k € No unbounded
acyclic acyclic acyclic no restriction NP-complete for k > 3
acyclic acyclic acyclic head arity < £ olynomial time
Y y Y £ e Ny poly
acyclic acyclic acyclic weak head arity < £ olynomial time
y y y £ e Ny poly
free-connex . . L i .
. acyclic acyclic no restriction polynomial time open
acyclic
hierarchical hierarchical hierarchical no restriction NP-complete for k > 3
g-hierarchical g-hierarchical g-hierarchical no restriction polynomial time open

Christopher Spinrath — Query Evaluation Revised

Conclusion

1. Work-Efficient Constant-Time Parallel Query Evaluation

» Transforming classical algorithms into constant-time parallel algorithms ”
data complextty
\/

2. Parallel-Correctness and -Boundedness of Datalog Queries

- L iS
» Deciding whether query evaluation is correct

3. Structurally Simple Rewritings

» Preserving structural properties of queries under access restriction
static analys®®

Christopher Spinrath — Query Evaluation Revised 24

References

ﬁ Beame, Paul, Paraschos Koutris, and Dan Suciu (2017). “Communication Steps for Parallel Query
Processing.” In: Journal of the ACM 64.6, 40:1-40:58. doi: 10.1145/3125644.

ﬁ Chen, Zhiyuan, Johannes Gehrke, and Flip Korn (2001). “Query Optimization In Compressed
Database Systems.” In: Proceedings of the 2001 ACM SIGMOD international conference on
Management of data, Santa Barbara, CA, USA, May 21-24, 2001. Ed. by Sharad Mehrotra and
Timos K. Sellis. ACM, pp. 271-282. doi: 10.1145/375663.375692.

[§ Codd, E.F. (1972). “Relational Completeness of Data Base Sublanguages.” In: Database Systems.
Ed. by R. Rustin. Prentice-Hall, pp. 33-64.

ﬁ Geck, Gaetano, Jens Keppeler, Thomas Schwentick, and Christopher S. (2022). “Rewriting with
Acyclic Queries: Mind Your Head." In: 25th International Conference on Database Theory, ICDT
2022, March 29 to April 1, 2022, Edinburgh, UK (Virtual Conference). Ed. by Dan Olteanu and
Nils Vortmeier. Vol. 220. LIPlcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 8:1-8:20. doi:
10.4230/LIPIcs.ICDT.2022.8. url: https://doi.org/10.4230/LIPIcs.ICDT.2022.8.

Christopher Spinrath — Query Evaluation Revised

https://doi.org/10.1145/3125644
https://doi.org/10.1145/375663.375692
https://doi.org/10.4230/LIPIcs.ICDT.2022.8
https://doi.org/10.4230/LIPIcs.ICDT.2022.8

References (cont.)

ﬁ Geck, Gaetano, Jens Keppeler, Thomas Schwentick, and Christopher S. (2023). “Rewriting with
Acyclic Queries: Mind Your Head." In: Logical Methods in Computer Science 19.4. doi:
10.46298/LMCS-19(4:17)2023. url: https://doi.org/10.46298/1mcs-19(4:17)2023.

ﬁ Immerman, Neil (1989). “Expressibility and Parallel Complexity.” In: SIAM Journal on Computing

18.3, pp. 625-638. doi: 10.1137/0218043.

Immerman, Neil (1999). Descriptive Complexity. Graduate texts in computer science. Springer. doi:

10.1007/978-1-4612-0539-5.

ﬁ Keppeler, Jens, Thomas Schwentick, and Christopher S. (2023). “Work-Efficient Query Evaluation
with PRAMSs." In: 26th International Conference on Database Theory, ICDT 2023, March 28-31,
2023, loannina, Greece. Ed. by Floris Geerts and Brecht Vandevoort. Vol. 255. LIPlcs. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 16:1-16:20. doi: 10.4230/LIPIcs.ICDT.2023.16. url:
https://doi.org/10.4230/LIPIcs.ICDT.2023.16.

[§ Ketsman, Bas, Aws Albarghouthi, and Paraschos Koutris (2018). “Distribution Policies for Datalog.”
en. In: International Conference on Database Theory, ICDT 2018. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 17:1-17:22. doi:
10.4230/LIPIcs.ICDT.2018.17.

=)

Christopher Spinrath — Query Evaluation Revised

https://doi.org/10.46298/LMCS-19(4:17)2023
https://doi.org/10.46298/lmcs-19(4:17)2023
https://doi.org/10.1137/0218043
https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.4230/LIPIcs.ICDT.2023.16
https://doi.org/10.4230/LIPIcs.ICDT.2023.16
https://doi.org/10.4230/LIPIcs.ICDT.2018.17

References (cont.)

ﬁ Levy, Alon Y., Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava (1995). “Answering
Queries Using Views." In: Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, May 22-25, 1995, San Jose, California, USA. Ed. by
Mihalis Yannakakis and Serge Abiteboul. ACM Press, pp. 95-104. doi: 10.1145/212433.220198.

[@ Neven, Frank, Thomas Schwentick, Christopher S., and Brecht Vandevoort (2019).
“Parallel-Correctness and Parallel-Boundedness for Datalog Programs.” In: 22nd International
Conference on Database Theory, ICDT 2019, March 26-28, 2019, Lisbon, Portugal. Ed. by
Pablo Barcelé and Marco Calautti. Vol. 127. LIPlcs. Schloss Dagstuhl - Leibniz-Zentrum fiir
Informatik, 14:1-14:19. doi: 10.4230/LIPIcs.ICDT.2019.14. url:
https://doi.org/10.4230/LIPIcs.ICDT.2019.14.

Christopher Spinrath — Query Evaluation Revised

https://doi.org/10.1145/212433.220198
https://doi.org/10.4230/LIPIcs.ICDT.2019.14
https://doi.org/10.4230/LIPIcs.ICDT.2019.14

	Introduction
	Work-Efficient Constant-Time Evaluation
	Parallel-Correctness for Datalog
	Structurally Simple Rewritings
	Conclusion
	References

