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Query Evaluation

Query Evaluation (simplified)

query Q

User Database
result Q(D)  access restriction

Examples for Circumstances Questions
» Multiple input queries » Are methods from the classical setting still suitable?
» Distributed database(s) » Algorithms, Correctness, Complexity, ...
» Access Restrictions » What is considered “suitable”?
> ... » (How) can methods be adapted?

Christopher Spinrath — Query Evaluation Revised



Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation

2. Parallel-Correctness and -Boundedness of Datalog Queries

3. Structurally Simple Rewritings

Christopher Spinrath — Query Evaluation Revised 3



Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation

data Comp\ex'\W

2. Parallel-Correctness and -Boundedness of Datalog Queries
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Settings

1. Work-Efficient Constant-Time Parallel Query Evaluation

Preliminary results published at ICDT'23, loannina, Greece Comp\ex‘\ty
(Keppeler, Schwentick, and S. 2023) data
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relational algebra query
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Query Evaluation

R:Rx S evaluation algorithm for @

relational algebra query

R ) Q
A S B _C Processor AL B C
5 2 2 7 5 2 7
3 4 2 1 Memory 5 2 1
input relations query result

Random Access Machine (RAM)

» running time = number of computation steps
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Q:RxS evaluation algorithm for Q

relational algebra query
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a o Ml s Po L P pe 1 po ] Piol A B C

52| 2|7 DD 527

314 2 11 Shared Memory 512 |1

input relations query result
Parallel Random Access Machine (PRAM)

» runs in constant time
» total number of computation steps?
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Constant-Time Parallel Query Evaluation

constant-time parallel

Q:RxS evaluation algorithm for Q

relational algebra query

R S [l e lrle Q
a o Ml s Po L P pe 1 po ] Piol A B C

52| 2|7 DD 527

314 2 11 Shared Memory 512 |1

input relations query result
Parallel Random Access Machine (PRAM)

Work: Sum of computation steps of all processors

Christopher Spinrath — Query Evaluation Revised



Constant-Time Parallel Evaluation

o

relational algebra
query

Christopher Spinrath — Query Evaluation Revised 5



Constant-Time Parallel Evaluation

Q ©

relational algebra Codd (1972) first-order
query formula

Christopher Spinrath — Query Evaluation Revised 5



Constant-Time Parallel Evaluation

¥

relational algebra Codd (1972) first-order Immerman (1989, 1999) constant-time
query formula parallel algorithm

Christopher Spinrath — Query Evaluation Revised 5



Constant-Time Parallel Evaluation

Q ©

relational algebra Codd (1972) first-order Immerman (1989, 1999) constant-time
query formula parallel algorithm

» The resulting algorithm requires work O(n*)
where k is the number of variables of the formula ¢ (Immerman 1989, 1999).
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Constant-Time Parallel Evaluation

Q ©

relational algebra

Codd (1972) first-order
query

Immerman (1989, 1999) constant-time
formula

parallel algorithm

» The resulting algorithm requires work O(nk)
where k is the number of variables of the formula ¢ (Immerman 1989, 1999).
» Not work-optimal for many classes of queries

A constant time parallel algorithm is work-optimal if
its work matches the running time of the best sequential algorithm.
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Overview of Main Results
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Overview of Main Results
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classic, sequential
query class

RAM (known)

semi-join algebra time O(IN)
acyclic conjunctive time

queries O(IN - 0UT)
natural join queries time

constant time,
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data structures

work O(IN) given a dictionary
" optimafar database values
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Dictionaries

» dictionary-based compressed databases

» for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)
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Dictionaries

» dictionary-based compressed databases

» for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example

Movies
Title Year

True Romance 1993

Jurassic Park 1993

The Godfather | 1972
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» dictionary-based compressed databases

» for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example
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Title Year
True Romance | 1993
Jurassic Park 1993
The Godfather | 1972
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Dictionaries

» dictionary-based compressed databases

» for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example
Movies
Title Year
True Romance | 1993
Jurassic Park 1993
The Godfather | 1972

Movies
Title Year
1 4
2 4
3 5

Dictionary
Key Value
1 True Romance
2 Jurassic Park
3 The Godfather
4 1993
5 1972

» we require that all numbers are of size at most O(|D|) for a database D
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Dictionaries

» dictionary-based compressed databases

> for instance, used for query optimisation (e.g. Chen, Gehrke, and Korn 2001)

Example
Movies
Title Year
1 4
2 4
3 5

» we require that all numbers are of size at most O(|D|) for a database D
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Settings for Constant-Time Parallel Evaluation

Dictionary Setting
» A dictionary for the database is available

Christopher Spinrath — Query Evaluation Revised 8



Settings for Constant-Time Parallel Evaluation

Dictionary Setting
» A dictionary for the database is available

General Setting
P A single processor can test for equivalence in constant time

» Lemma: A dictionary can be computed in constant-time with work O(IN?).
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Settings for Constant-Time Parallel Evaluation

Dictionary Setting

» A dictionary for the database is available

General Setting
P A single processor can test for equivalence in constant time

» Lemma: A dictionary can be computed in constant-time with work O(IN?).

Ordered Setting
» There is a linear order on the domain values
» A single processor can test for less than in constant time

» Lemma: For every € > 0, a dictionary can be computed in constant-time with work
O(IN'T€), given suitably ordered arrays for the database relations.
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Settings

2. Parallel-Correctness and -Boundedness of Datalog Queries

ICDT'19, Lisbon, Portugal (Neven, Schwentick, S., and Vandevoort 2019) -
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Distributed Evaluation

» transitive closure T

» Datalog program

T(x,y) < E(x,y)
T(x,2) < T(x,y), E(y,2)

» recursive evaluation
(fixed point computation)
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Distributed Evaluation global

database
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.. local (=2
> transitive closure T evaluation "4 - (:1
» Datalog program ¥}< S
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T(x,y) « E(x,y) v i
T(X,Z) < T(Xa)/)a E(Yaz) ~, .\{o}. ., Q
» recursive evaluation
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Server 1 Server 2 Server n
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Distributed Evaluation global

database

initial distribution

=
*—0
> transitive closure T oeal "4 " (:)
» Datalog program yx D
communication
0 A y
T(va)<_E(Xay) I | *— L
ocal ¢§I ¢¥ ﬁ
T(X’ Z) <_ T(X7.y)’ E(.y7 z) evaluation ¢ ® ° ./. .\. ‘(.
P recursive evaluation
(fixed point computation)
result U %. U-
®

Server 1 Server 2 Server n
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Distributed Evaluation

Massively Parallel
Communication (MPC)
model
(Beame, Koutris, and Suciu 2017)
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The Parallel-Correctness Problem
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The Parallel-Correctness Problem

Parallel-Correctness Problem

Input:
» Datalog program
» distribution policy

» communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?
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The Parallel-Correctness Problem

Parallel-Correctness Problem

Input:
» Datalog program
» distribution policy

» communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?
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The Parallel-Correctness Problem

Parallel-Correctness Problem Theorem (Ketsman, Albarghouthi, and Koutris 2018)

Input: Parallel-correctness for general Datalog programs is
» Datalog program undecidable.
» distribution policy » Even for “simple” policies:
» communication policy » only two servers
» all but one relations are distributed to both
Question: Servers

» no communication
Do distributed and global evaluation

yield the same result for all databases?
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The Parallel-Correctness Problem

Parallel-Correctness Problem Theorem (Ketsman, Albarghouthi, and Koutris 2018)

Input: Parallel-correctness for general Datalog programs is
» Datalog program undecidable.
» distribution policy » Even for “simple” policies:
» communication policy » only two servers
» all but one relations are distributed to both
Question: Servers

» no communication
Do distributed and global evaluation

yield the same result for all databases? » Is there a fragment of Datalog for which
parallel-correctness is decidable?

» How to specify distribution and communication
policies?
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Basics

Relational databases

E(a, b,¢c),E(a, d,g),F(a,d),. ..
————

fact
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Basics

Relational databases Datalog programs consist of rules
E(a, b,c), E(a,d, g), F(a,d),... PR
fact T(X7y)<_E(X7y7Z)7R(X7V)-
head body

» relation symbol of the head does
not occur in the database

» rules can be recursive

» no negation
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Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
. and containment is undecidable for general Datalog
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Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
. and containment is undecidable for general Datalog
general Datalog

)

monadic only unary Example:
Datalog head atoms R(x) < S(x), E(y,z, u)

Containment is decidable for monadic Datalog
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Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
. and containment is undecidable for general Datalog
general Datalog

|

frontier-guarded Each rule has a guard atom

. . Example:
» contains all head variables P

W T(x, E(x, F
Deralieg » relation symbol from database (%,y) < E(xy,2), Fly,v)
monadic only unary Example:

Datalog head atoms R(x) < S(x), E(y,z, u)

Containment is decidable for monadic Datalog and frontier-guarded Datalog
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Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
. and containment is undecidable for general Datalog
general Datalog

|

frontier-guarded Each rule has a guard atom

. . Example:
» contains all head variables P

W T(x,y) < E(x, F
DatAalog » relation symbol from database (%) (x,y,2), F(y,v)
rewrite
monadic only unary Example:
Datalog head atoms R(x) < S(x), E(y,z, u)

Containment is decidable for monadic Datalog and frontier-guarded Datalog
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Distribution Policies

Idea: Use hash functions hy, ..., hy

—
E(a,b,c)
E(a,d, g)

F(a,d)
E(a,e, g)

. 7
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Distribution Policies

Idea: Use hash functions hy, ..., h, fast, evenly distribution

—
E(a,b,c)
E(a,d,g)

F(a,d)
E(a,e, g)

. 7

Server 1

Server 2
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Distribution Policies

Idea: Use hash functions hy, ..., hy

S—
E(a,b,c)
E(a,d,g)

F(a,d) —
E(a,e, g)

. 7
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Distribution Policies

Idea: Use hash functions hy,...
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Distribution Policies

Idea: Use hash functions hy, ..., h, fast, evenly distribution

hs(g,a) = o
Here: Hash policy schemes
» describes how hash functions are applied

» defines class of hash functions
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Communication Policies

Data-Moving Distribution Constraints

R(x,y)aA, S(y)ar — R(x, y)ar

body head

R(a, b)

Server 1
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Communication Policies

Data-Moving Distribution Constraints

R(x,y)aA, S(y)ar — R(x, y)ar

body head

Server 1
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Communication Policies

Data-Moving Distribution Constraints

R(x,y)aA, S(y)ar — R(x, y)ar

body head

Both R(x,y) and x occur in the body.
» No creation of facts

» No creation of servers

Server 1
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Parallel-Correctness: Main Results

hash policy schemes and

Datalog fragment . R .
g reg data-moving distribution constraints

frontier-guarded

monadic
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Parallel-Correctness: Main Results

hash policy schemes and

Datalog fragment . o .
g reg data-moving distribution constraints

frontier-guarded undecidable*

monadic undecidable*

*mainly contributed by my co-authors to the ICDT'19 paper
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Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property

Datalog fragment . R . . .
g reg data-moving distribution constraints syntactical fragment  changed semantics

frontier-guarded undecidable*

monadic undecidable*

Polynomial Communication Property

» The amount of communication without any
local computation in between is bounded polynomially

*mainly contributed by my co-authors to the ICDT'19 paper
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Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property
Datalog fragment . R . . .
data-moving distribution constraints syntactical fragment  changed semantics
frontier-guarded undecidable* 2ExpTime-complete  2ExpTime-complete
monadic undecidable*

Parallel-correctness for frontier-guarded Datalog,

» hash policy schemes, and
» data-moving distribution constraints
» with the polynomial communication property

is 2ExpTime-complete.
*mainly contributed by my co-authors to the ICDT'19 paper
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Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property

Datalog fragment . R . . .
g reg data-moving distribution constraints syntactical fragment  changed semantics

frontier-guarded undecidable* 2ExpTime-complete  2ExpTime-complete

monadic undecidable* in 2ExpTime in 2ExpTime

Reminder: Every monadic Datalog query can be trans-
lated into an equivalent frontier-guarded Datalog

query.

*mainly contributed by my co-authors to the ICDT'19 paper
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Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property

Datalog fragment . R . . .
g reg data-moving distribution constraints syntactical fragment  changed semantics

frontier-guarded undecidable* 2ExpTime-complete  2ExpTime-complete

monadic undecidable* irMe

— _—

Reminder: Every monadic Datalog query can be trans-
lated into an equivalent frontier-guarded Datalog

query.

*mainly contributed by my co-authors to the ICDT'19 paper
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Parallel-Correctness: Main Results

hash policy schemes and ..with polynomial communication property

Datalog fragment . R . . .
g reg data-moving distribution constraints syntactical fragment  changed semantics

frontier-guarded undecidable* 2ExpTime-complete  2ExpTime-complete

monadic undecidable* open undecidable*

Reminder: Every monadic Datalog query can be trans-
lated into an equivalent frontier-guarded Datalog

query.

*mainly contributed by my co-authors to the ICDT'19 paper
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Parallel-Boundedness

Parallel-Boundedness

There is a bound r € N such that

» for every database
» no new facts are computed

» after r communication rounds.

» Local computations may be unbounded!
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Parallel-Boundedness

Parallel-Boundedness

There is a bound r € N such that

» for every database
» no new facts are computed

» after r communication rounds.

» Local computations may be unbounded!

Parallel-boundedness for frontier-guarded Datalog programs,

» hash policy schemes, and
» data-moving distribution constraints with the polynomial communication property

that are parallel-correct is 2ExpTime-complete.
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Settings

3. Structurally Simple Rewritings
ICDT'22, Edinburgh, UK (Geck, Keppeler, Schwentick, and S. 2022)

LMCS Journal (Geck, Keppeler, Schwentick, and S. 2023)
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Rewritings

1| 4
2 |5
L

relational database
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Rewritings

Query H(x,w) < R(x,y), S(y,2), T(z,w)

Conjunctive Query
single, non-recursive rule

1| 4
2 |5
L

relational database
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Rewritings
no direct
access

Query H(x,w) < R(x,y), S(y,2), T(z,w)

Conjunctive Query
single, non-recursive rule

1| 4
2 |5
L

relational database
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Rewritings

no direct
access
Query H(X,W)%R(X,y), 5(}/72)7 T(sz) 1 2
2 3
View
V1(x,z)<—R(x,y),S(y,z) R 2 1
3 1
View
V2(27 W) — 5(}/7 2)7 T(Z, W)
1| o4
2 5
«  J
relational database
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Rewritings

no direct
access

Query H(x,w) < R(x,y), S(y,2), T(z,w)
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View
V1(X,Z) A R(va)v S(y,Z)

View

\ 4

1 1
2 1
1 4

1 4
2 5
«

relational database
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Rewritings

no direct
access

Query H(x,w) < R(x,y), S(y,2), T(z,w)
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View
V1(X,Z) A R(va)v S(y,Z)

View

\ 4

1 4
2 5
«

relational database
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Rewritings

no direct
access

Query H(x,w) < R(x,y), S(y,2), T(z,w)

H(x,w) < 7?7

7
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View
V1(X,Z) A R(va)v S(y,Z)

View

\ 4

1|1
2 |1
1| 4
L

1 4
2 5
«

relational database

19



Rewritings

no direct
1 Y e e T e I - > 1 2
2 | 4 2|3
—

V1(x,z)<—R(x,y),S(y,z) 2 1

1 1 >
H(x,w) < 7?7 N 5 1 3 1

77 View
1 A 1 4
L J 2 5
«  J
relational database
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Rewritings

1 O it e
2 4
e —
!
Rewriting 1 1
H(x,w) < Vi(x,z), Va(z,w) 5 1
1 4 >
2 4
1 4
e
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no direct
access

View
V1(X,Z) A R(va)v S(y,Z)

View

1] 2
2 |3
J 121
31
1| o4
2 | s
——

relational database

19



The Rewriting Problem
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The Rewriting Problem

rewriting Q'?

A

database
D

views )V

The Rewriting Problem

Input:
» conjunctive query @
> set V of views
Question:

Is there a rewriting for @
with respect to V?
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The Rewriting Problem

query Q S —
Q(D) == =mmmmmme e eeeeeeeeeeeeeen e >
= o database
> D
Q'(V(D)) — - > V(D) H
rewriting Q7?7 >
views V
The Rewriting Problem Theorem (Levy et al. 1995)
Input: The rewriting problem for
» conjunctive query @ » conjunctive queries and
> set V of views » views defined by conjunctive queries
Question: is NP-complete.

Is there a rewriting for @
with respect to V?
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The Rewriting Problem

query Q S —
Q(D) == =mmmmmme e eeeeeeeeeeeeeen e >
= o database
> D
Q'(V(D)) — - > V(D) H
rewriting Q7?7 >
views V
The Rewriting Problem Theorem (Levy et al. 1995)
Input: The rewriting problem for
» conjunctive query @ » conjunctive queries and
> set V of views » views defined by conjunctive queries
Question: is NP-complete.

Is there a rewriting for @

I — Restrict everything to structurally simple

queries
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Acyclic Conjunctive Queries

For acyclic queries many problems are in polynomial time: containment, evaluation, ..
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Acyclic Conjunctive Queries

For acyclic queries many problems are in polynomial time: containment, evaluation, ..

Definition
A conjunctive query is acyclic if it has a join tree
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Acyclic Conjunctive Queries

For acyclic queries many problems are in polynomial time: containment, evaluation, ..

Definition
A conjunctive query is acyclic if it has a join tree

Example

H(x,y) < R(x,y),S(y,z), F(z), E(x), T(z,w) is acyclic

R(x,y)

/ \ For every variable:

E(x S(y,2) the induced subgraph is connected

/

)
F(z) T(z,w)
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Complexity of the Acyclic Rewriting Problem

acyclic query Q

| database

D

YY

Y

o) P
Q/(V(D)) acyclic rewriting Q'?; V(D)

If the query is acyclic, we would like
the rewriting to be acyclic as well

Christopher Spinrath — Query Evaluation Revised
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Complexity of the Acyclic Rewriting Problem
acyclic query Q

database
D

Q'(V(D)) >

acyclic rewriting Q'?

I
=
S
vy

acyclic views V

If the query is acyclic, we would like The acyclic rewriting problem for

the rewriting to be acyclic as well » acyclic queries and

» views defined by acyclic queries

is NP-complete.

N
N
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Complexity of the Acyclic Rewriting Problem

acyclic query Q —
Q(D) == =mmmmmmm e e >
= o | database
> D
"V(D > V(D :
Q ( ( )) rewriting Q'? ( ) " >

acyclic views V

The rewriting problem for
» acyclic queries and
» views defined by acyclic queries

is NP-complete.
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Complexity of the Acyclic Rewriting Problem
acyclic query Q

database
D

Q'(V(D)) >

acyclic rewriting Q'?

I
=
S
vy

acyclic views V

If the query is acyclic and there is any
rewriting, there is an acyclic rewriting.
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Complexity of the Acyclic Rewriting Problem

acyclic query Q —
Q(D) == =mmmmmmm e e >
= | database
> D
"V(D > V(D :
V(D) acyclic rewriting Q'? (D) >

acyclic views V
with head arity < k

For every k > 0, the acyclic rewriting problem for

» acyclic queries and
» views defined by acyclic queries with head arity at most k

is in polynomial time.

N
N
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Rewritings: Main Results

arity of database relations

Views Query Rewriting Rg?t\ﬁg\tl\'g”
is < k,k € No unbounded
acyclic acyclic acyclic no restriction NP-complete for k > 3
acyclic acyclic acyclic head arity < £ olynomial time
Y y Y £ e Ny poly
acyclic acyclic acyclic weak head arity < £ olynomial time
y y y £ e Ny poly
free-connex . . L i .
. acyclic acyclic no restriction polynomial time open
acyclic
hierarchical hierarchical hierarchical no restriction NP-complete for k > 3
g-hierarchical  g-hierarchical  g-hierarchical no restriction polynomial time open
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Conclusion

1. Work-Efficient Constant-Time Parallel Query Evaluation

» Transforming classical algorithms into constant-time parallel algorithms ”
data complextty
\/

2. Parallel-Correctness and -Boundedness of Datalog Queries

- L iS
» Deciding whether query evaluation is correct

3. Structurally Simple Rewritings

» Preserving structural properties of queries under access restriction
static analys®®
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