

Rewriting with Acyclic Queries: Mind Your Head

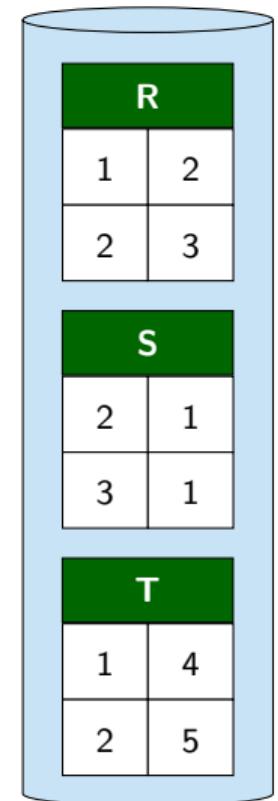
Gaetano Geck Jens Keppeler Thomas Schwentick Christopher Spinrath

TU Dortmund University

25th ICDT March 30, 2022

This work is licensed under a
[Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Germany License](#) license

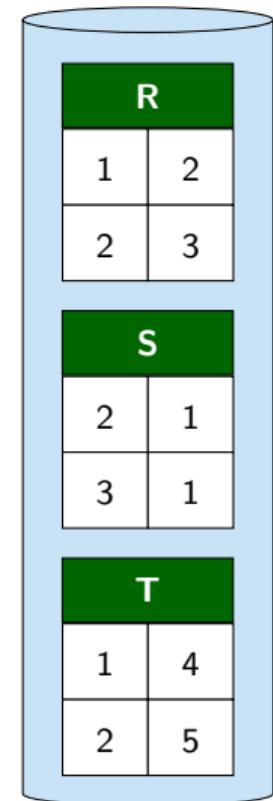
Rewritings



relational database

Rewritings

Query $H(x, w) \leftarrow R(x, y), S(y, z), T(z, w)$

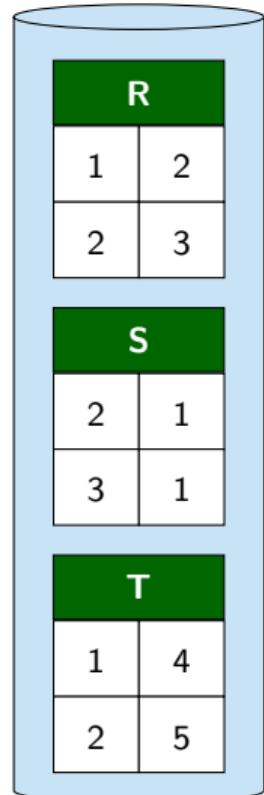


relational database

Rewritings

Query $H(x, w) \leftarrow R(x, y), S(y, z), T(z, w)$

no direct
access



R	
1	2
2	3

S	
2	1
3	1

T	
1	4
2	5

relational database

Rewritings

Query $H(x, w) \leftarrow R(x, y), S(y, z), T(z, w)$

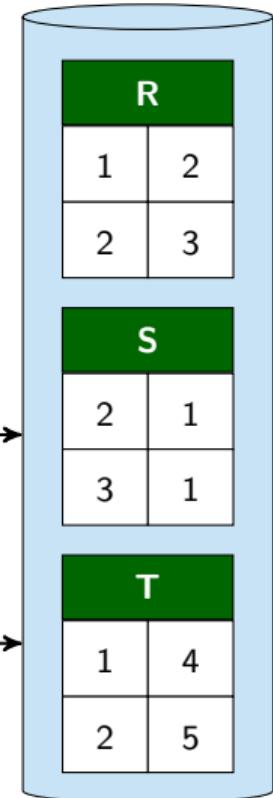
no direct access

View

$V_1(x, z) \leftarrow R(x, y), S(y, z)$

View

$V_2(z, w) \leftarrow S(y, z), T(z, w)$



relational database

Rewritings

Query $H(x, w) \leftarrow R(x, y), S(y, z), T(z, w)$

no direct access

V_1	
1	1
2	1

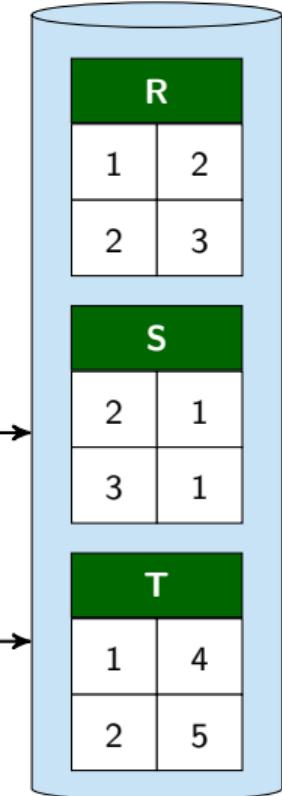
View

$V_1(x, z) \leftarrow R(x, y), S(y, z)$

V_2	
1	4

View

$V_2(z, w) \leftarrow S(y, z), T(z, w)$

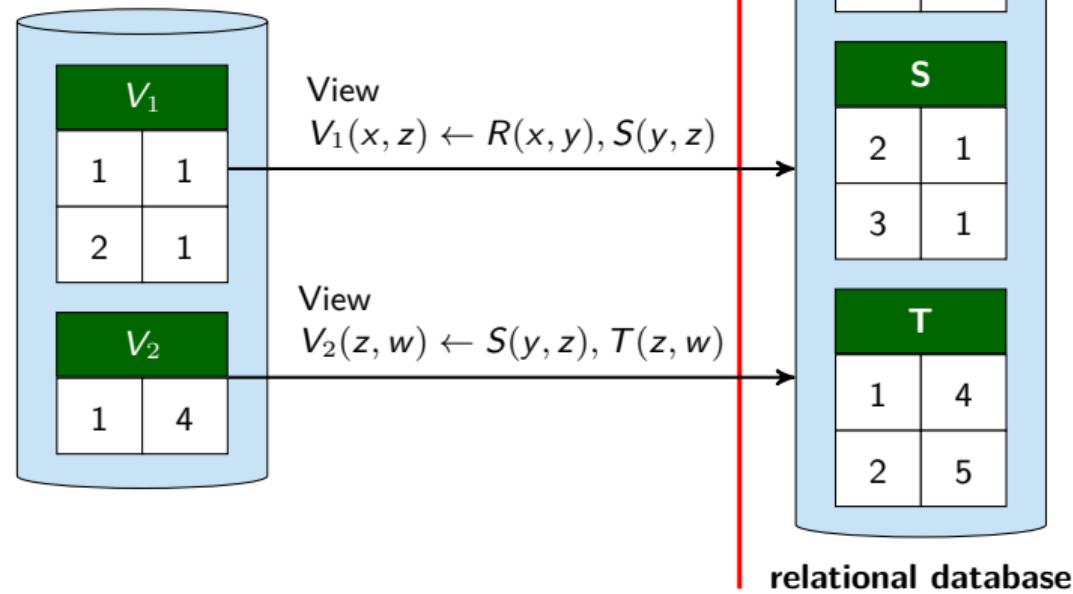


relational database

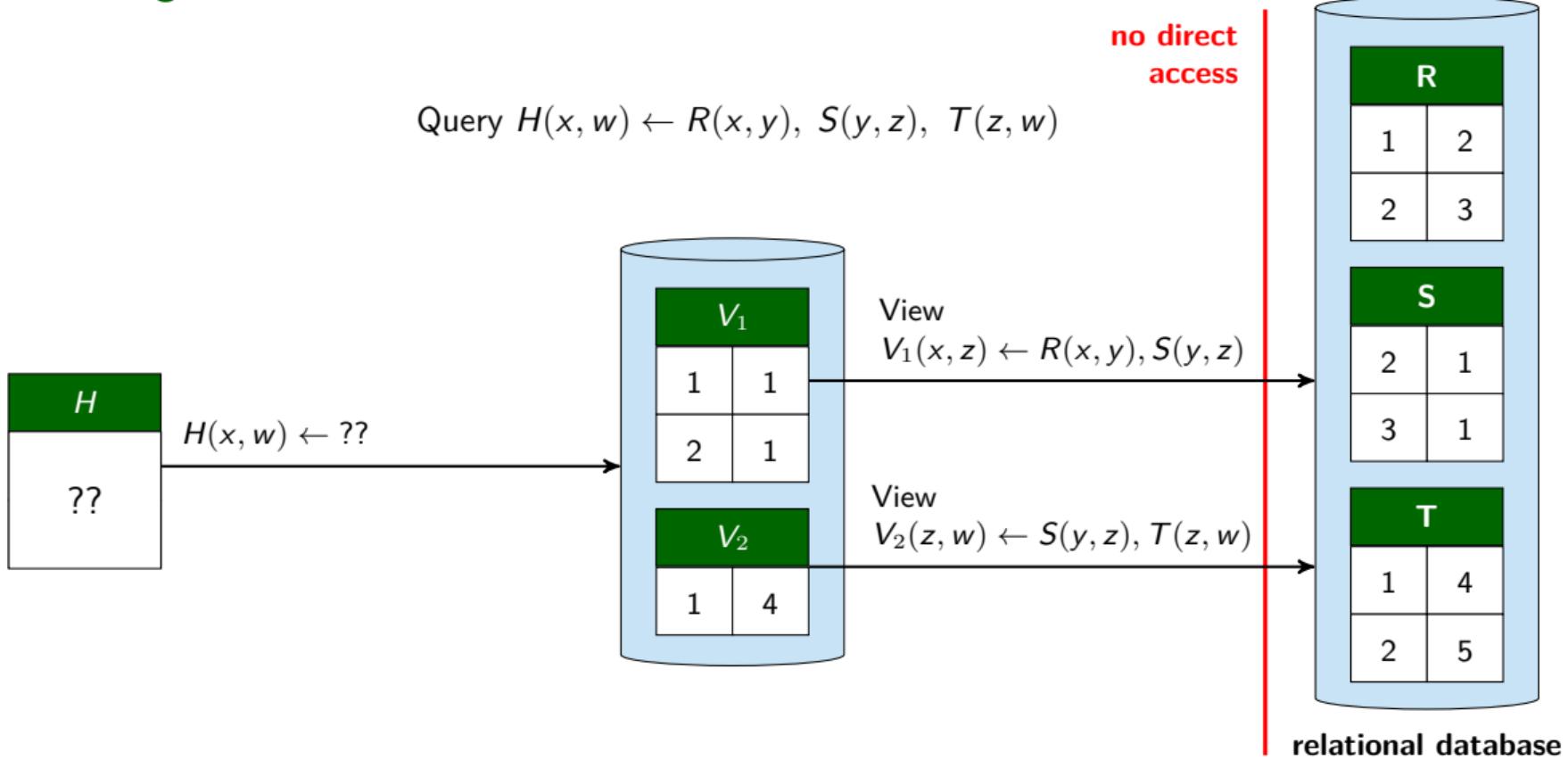
Rewritings

Query $H(x, w) \leftarrow R(x, y), S(y, z), T(z, w)$

no direct access



Rewritings



Rewritings

H	
1	4
2	4

Query $H(x, w) \leftarrow R(x, y), S(y, z), T(z, w)$

! $=$

H	
	$H(x, w) \leftarrow ??$

no direct access

V_1	
1	1
2	1

V_2	
1	4

View

$V_1(x, z) \leftarrow R(x, y), S(y, z)$

View

$V_2(z, w) \leftarrow S(y, z), T(z, w)$

R	
1	2
2	3

S	
2	1
3	1

T	
1	4
2	5

relational database

Rewritings

H	
1	4
2	4

Query $H(x, w) \leftarrow R(x, y), S(y, z), T(z, w)$

no direct access

!=

H	
1	4
2	4

Rewriting

$H(x, w) \leftarrow V_1(x, z), V_2(z, w)$

V_1	
1	1
2	1

V_2	
1	4

View

$V_1(x, z) \leftarrow R(x, y), S(y, z)$

View

$V_2(z, w) \leftarrow S(y, z), T(z, w)$

R	
1	2
2	3

S	
2	1
3	1

T	
1	4
2	5

relational database

Rewritings for Conjunctive Queries

Conjunctive Queries are of the form

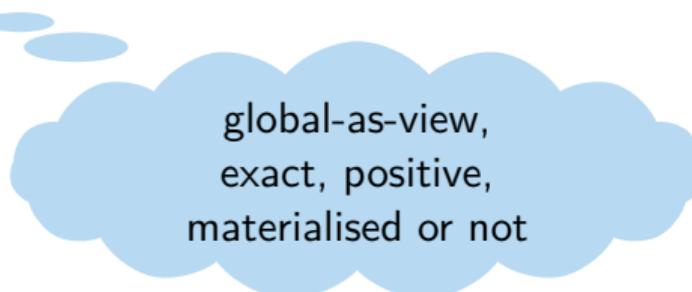
$$\underbrace{H(x, w)}_{\text{head}} \leftarrow \underbrace{R(x, y), \overbrace{S(y, z)}^{\text{atom}}, T(z, w)}_{\text{body}}$$

Rewritings for Conjunctive Queries

Conjunctive Queries are of the form

$$\underbrace{H(x, w)}_{\text{head}} \leftarrow \underbrace{R(x, y), \overbrace{S(y, z)}^{\text{atom}}, T(z, w)}_{\text{body}}$$

Views are just conjunctive queries with a special role



Rewritings for Conjunctive Queries

Conjunctive Queries are of the form

$$\underbrace{H(x, w)}_{\text{head}} \leftarrow \underbrace{R(x, y), \overbrace{S(y, z)}^{\text{atom}}, T(z, w)}_{\text{body}}$$

Views are just conjunctive queries with a special role

global-as-view,
exact, positive,
materialised or not

exact/equivalent
rewriting

A Rewriting

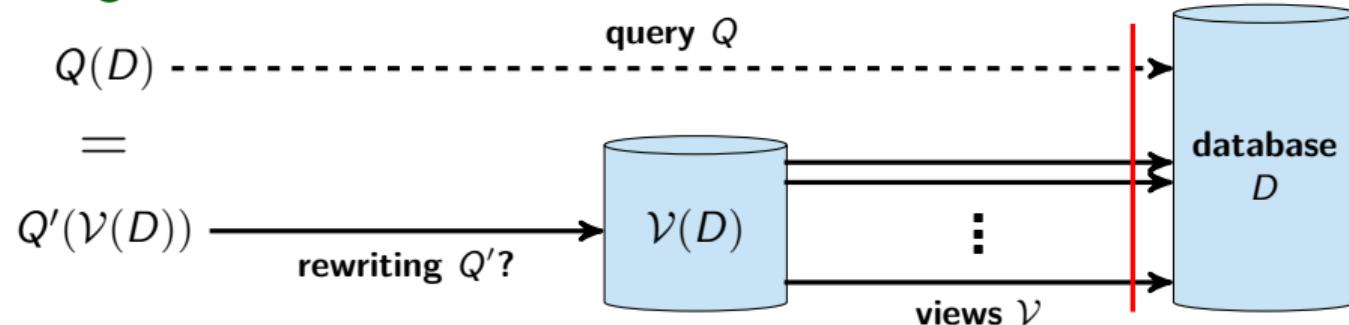
- for a query Q
- with respect to a set \mathcal{V} of views

is a query Q' such that

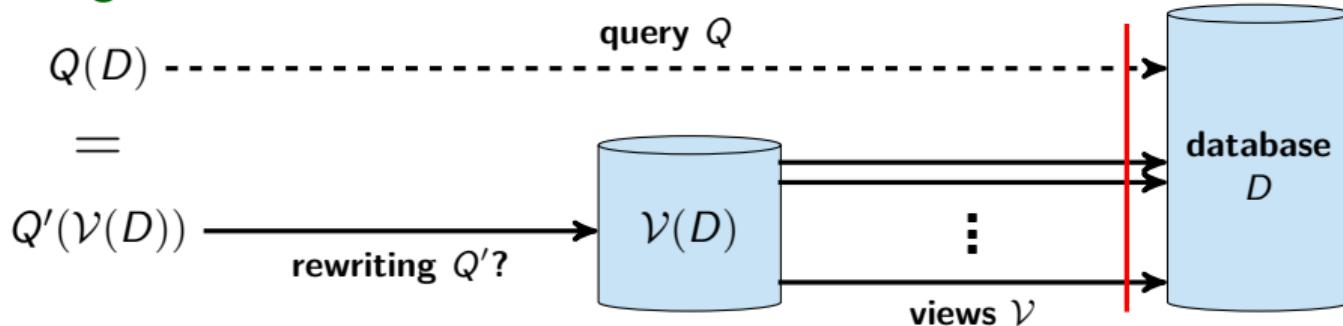
$$Q'(\mathcal{V}(D)) = Q(D)$$

holds for all databases D

The Rewriting Problem



The Rewriting Problem



The Rewriting Problem

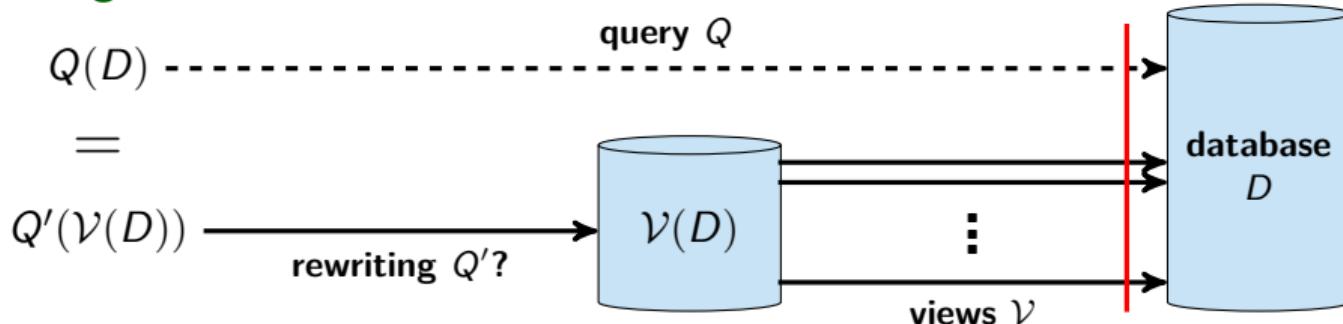
Input:

- conjunctive query Q
- set \mathcal{V} of views

Question:

Is there a rewriting for Q
with respect to \mathcal{V} ?

The Rewriting Problem



The Rewriting Problem

Input:

- conjunctive query Q
- set \mathcal{V} of views

Question:

Is there a rewriting for Q
with respect to \mathcal{V} ?

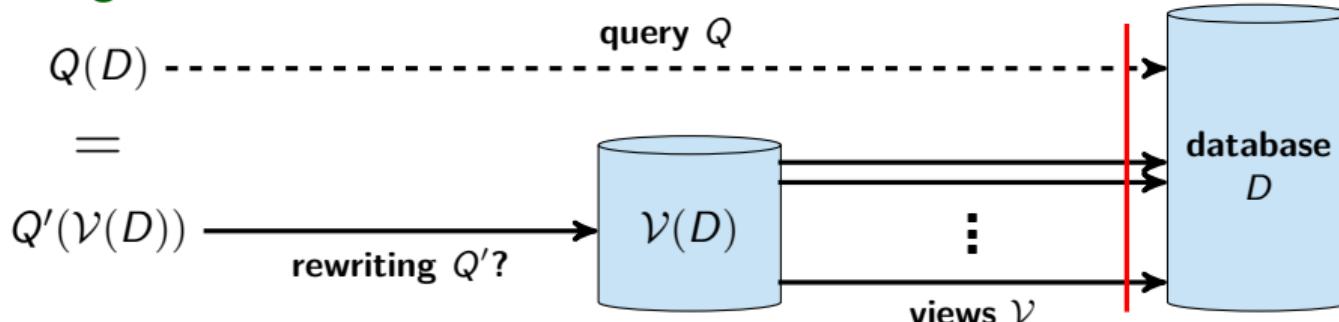
Theorem (Levy, Mendelzon, Sagiv, and Srivastava 1995)

The rewriting problem for

- *conjunctive queries and*
- *views defined by conjunctive queries*

is NP-complete.

The Rewriting Problem



The Rewriting Problem

Input:

- conjunctive query Q
- set \mathcal{V} of views

Question:

Is there a rewriting for Q with respect to \mathcal{V} ?

Theorem (Levy, Mendelzon, Sagiv, and Srivastava 1995)

The rewriting problem for

- *conjunctive queries and*
- *views defined by conjunctive queries*

is NP-complete.

→ Restrict everything to *structurally simple queries*

Acyclic Conjunctive Queries

For **acyclic** queries many problems are in **polynomial time**: containment, evaluation, ...

Acyclic Conjunctive Queries

For **acyclic** queries many problems are in **polynomial time**: containment, evaluation, ...

Definition

A conjunctive query is **acyclic** if it has a **join tree**

Acyclic Conjunctive Queries

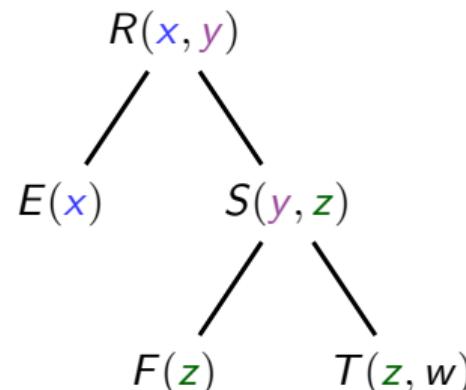
For **acyclic** queries many problems are in **polynomial time**: containment, evaluation, ...

Definition

A conjunctive query is **acyclic** if it has a **join tree**

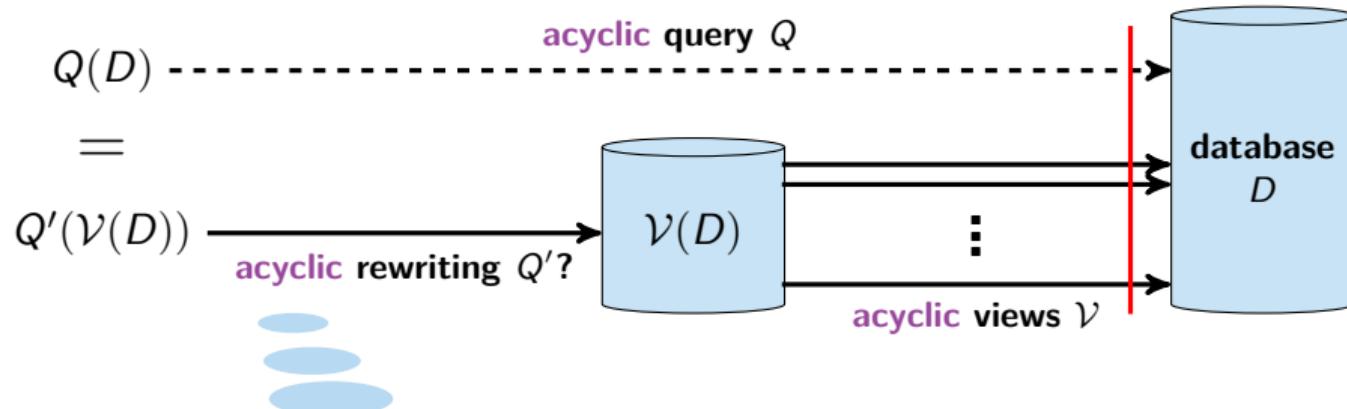
Example

$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$ is **acyclic**



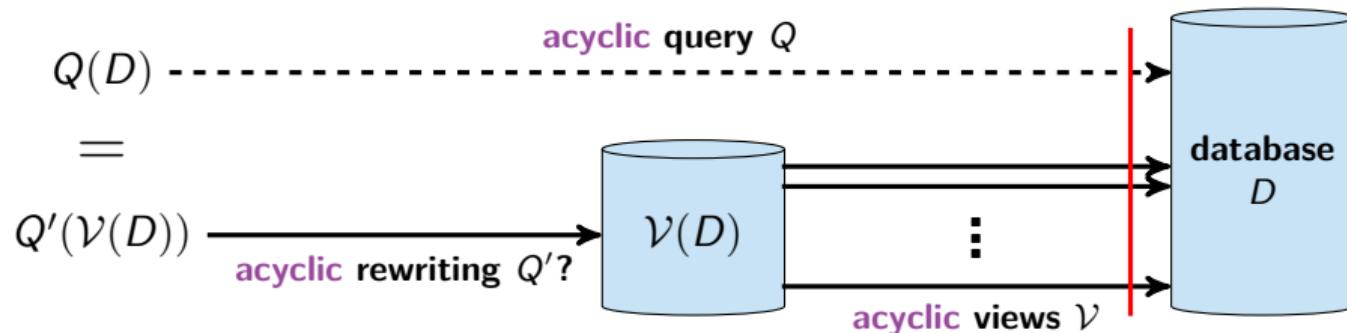
For every variable:
the induced subgraph is connected

Complexity of the **Acyclic** Rewriting Problem



If the query is **acyclic**, we would like the rewriting to be **acyclic** as well

Complexity of the *Acyclic* Rewriting Problem



Theorem

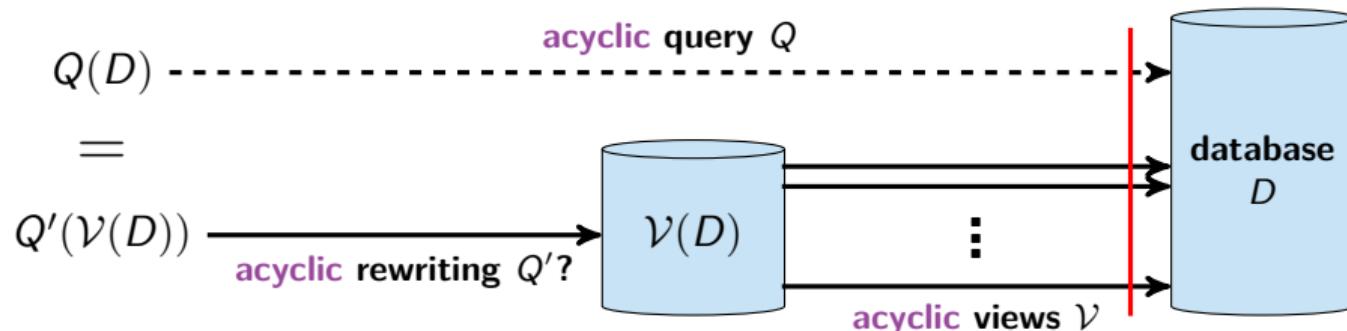
The acyclic rewriting problem for

- *acyclic queries and*
- *views defined by acyclic queries*

is NP-complete.

- Even if only a single view is given

Complexity of the *Acyclic* Rewriting Problem



Theorem

The *acyclic* rewriting problem for

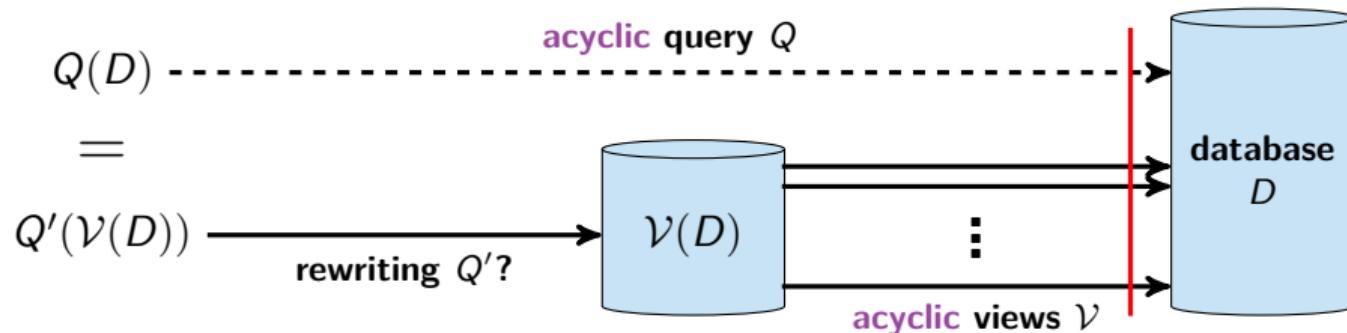
- *acyclic* queries and
- *views* defined by *acyclic* queries

is **NP-complete**.

Proof Approach

- in NP: guess and verify
- NP-hardness: reduction from 3SAT

Complexity of the *Acyclic* Rewriting Problem



Theorem

The rewriting problem for

- *acyclic queries and*
- *views defined by acyclic queries*

is NP-complete.

Acyclic Rewritings

Theorem

For every

- *acyclic query and*
- *views defined by conjunctive queries*

the following holds: If there is a rewriting, then there is an acyclic rewriting.

Acyclic Rewritings – Example

Acyclic Query

$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$

Views

$V_1(x, y) \leftarrow R(x, y), S(y, z)$

$V_2(y, z) \leftarrow S(y, z), F(z)$

$V_3(z, x) \leftarrow E(x), T(z, w)$

Acyclic Rewritings – Example

Acyclic Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

Acyclic Rewritings – Example

Acyclic Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

This rewriting

- is **cyclic**
- minimal
(no atom can be removed)

Acyclic Rewritings – Example

Acyclic Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

This rewriting

- is **cyclic**
- minimal
(no atom can be removed)

Acyclic Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z', x), V_3(z, x')$$

Acyclic Rewritings

Theorem

For every

- *acyclic query and*
- *views defined by conjunctive queries*

the following holds: If there is a rewriting, then there is an acyclic rewriting.

Acyclic Rewritings

Theorem

For every

- *acyclic query and*
- *views defined by conjunctive queries*

the following holds: If there is a rewriting, then there is an acyclic rewriting.

Proof ingredients

- ① **Characterisation:** There is a rewriting if and only if there is a **consistent cover partition** (similar to other characterisations in the literature)
- ② **Refinement of the partition along a join tree**

Proof Ingredient: Characterisation

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$

$$V_2(y, z) \leftarrow S(y, z), F(z)$$

$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Rewriting

$$H(x, y) \leftarrow V_1(x, y), \quad V_2(y, z), \quad V_3(z, x)$$

Proof Ingredient: Characterisation

Query

$$H(x, y) \leftarrow \underbrace{R(x, y)}_{\text{partition}}, \underbrace{S(y, z), F(z)}_{A_2}, \underbrace{E(x), T(z, w)}_{A_3}$$

Views

$$\begin{aligned}V_1(x, y) &\leftarrow R(x, y), S(y, z) \\V_2(y, z) &\leftarrow S(y, z), F(z) \\V_3(z, x) &\leftarrow E(x), T(z, w)\end{aligned}$$

Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

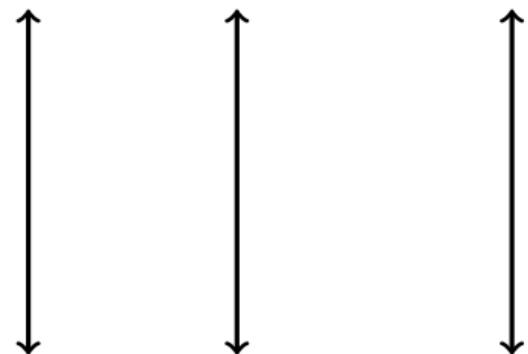
Proof Ingredient: Characterisation

Query

$$H(x, y) \leftarrow \underbrace{R(x, y)}, \underbrace{S(y, z)}, \underbrace{F(z)}, \underbrace{E(x)}, \underbrace{T(z, w)}$$

partition

$$A_1 \qquad \qquad A_2 \qquad \qquad A_3$$



Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$

$$V_2(y, z) \leftarrow S(y, z), F(z)$$

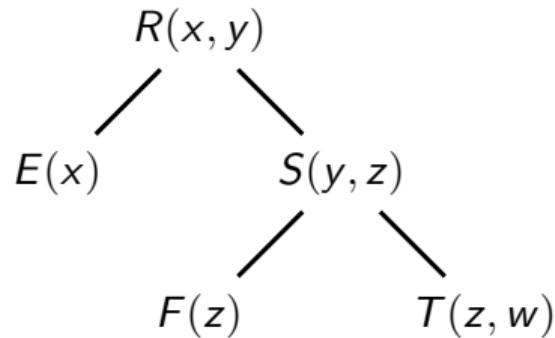
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Proof Ingredient: Refinement

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Join tree for the query



Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Rewriting

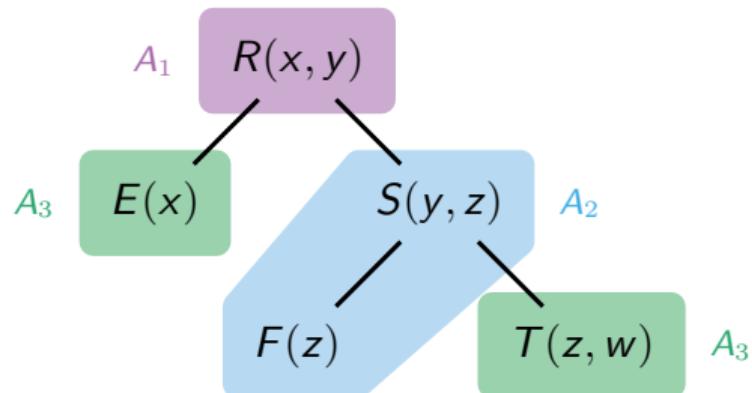
$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

Proof Ingredient: Refinement

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Join tree for the query



Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Rewriting

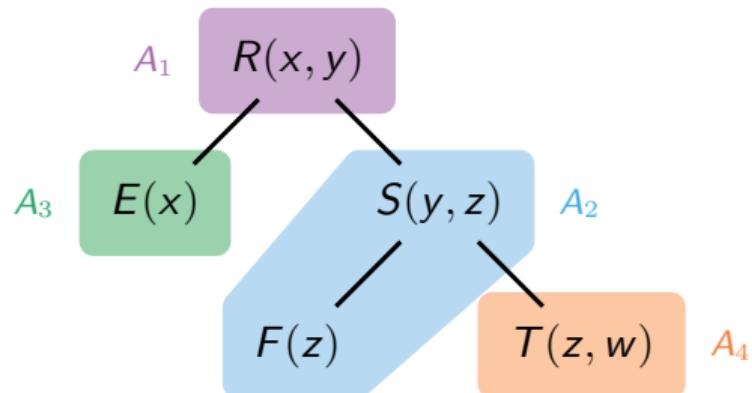
$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

Proof Ingredient: Refinement

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Join tree for the query



Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

Views

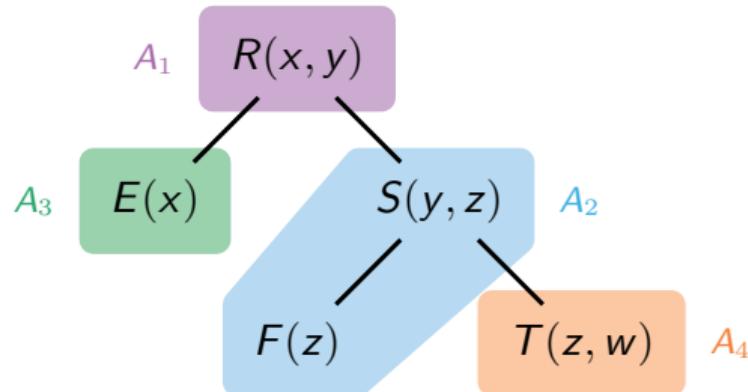
$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Proof Ingredient: Refinement

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Join tree for the query



Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Rewriting

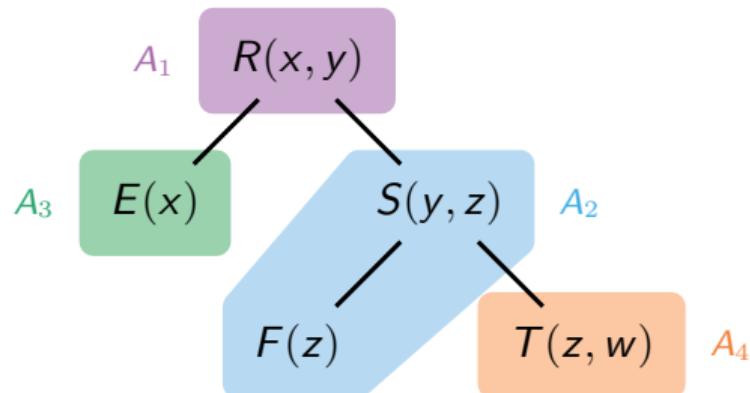
$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x) \rightsquigarrow H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x), V_3(z, x)$$

Proof Ingredient: Refinement

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Join tree for the query



Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

Rewriting

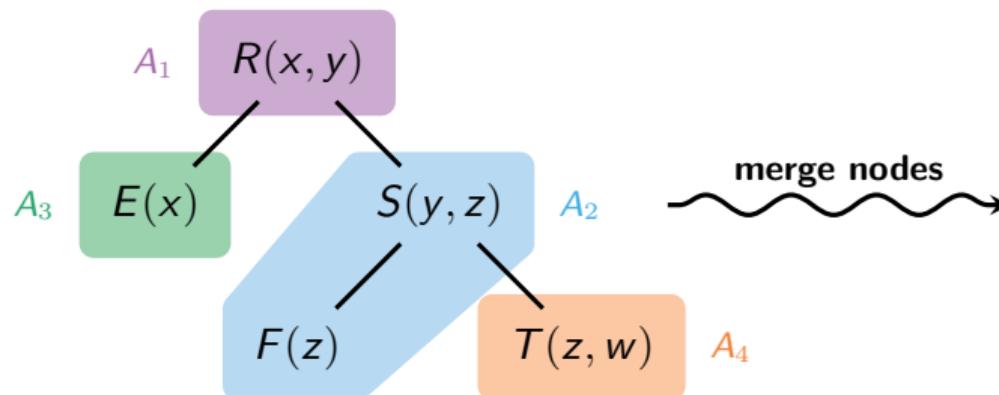
$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x) \rightsquigarrow H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(\mathbf{z}', x), V_3(z, \mathbf{x}')$$

Proof Ingredient: Refinement

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Join tree for the query

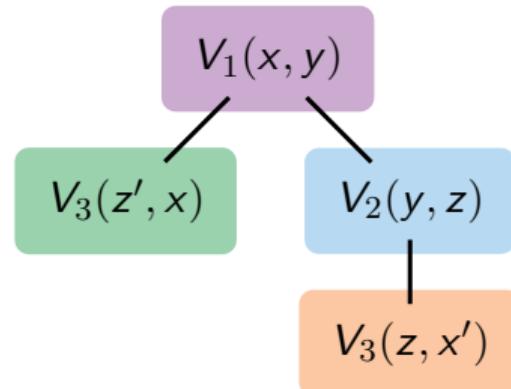


Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$

$$V_2(y, z) \leftarrow S(y, z), F(z)$$

$$V_3(z, x) \leftarrow E(x), T(z, w)$$



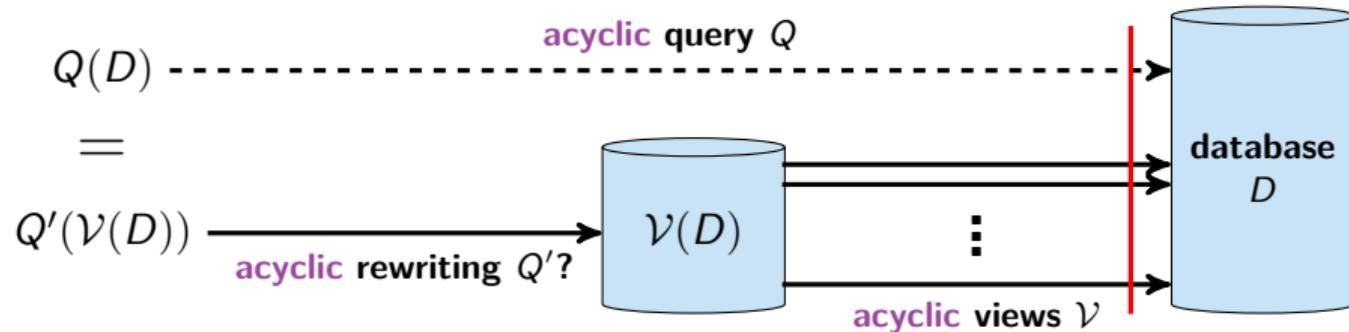
Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

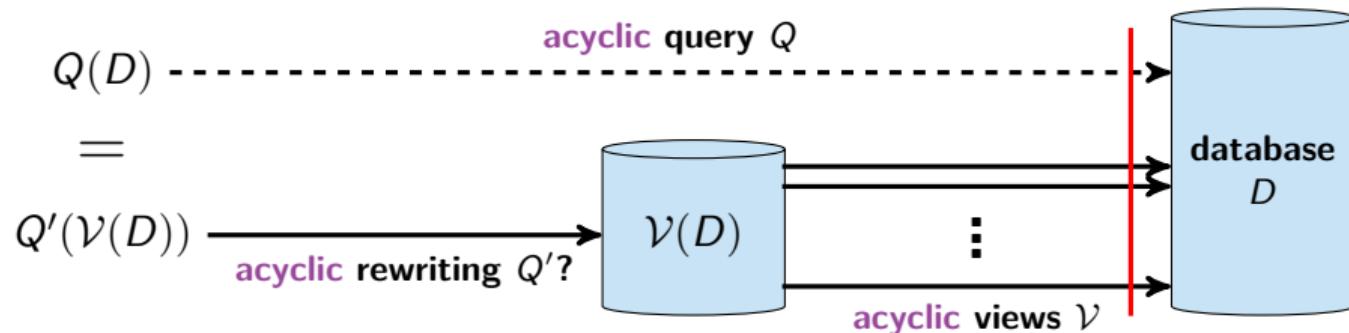
Acyclic Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z', x), V_3(z, x')$$

Complexity Results – The Good News

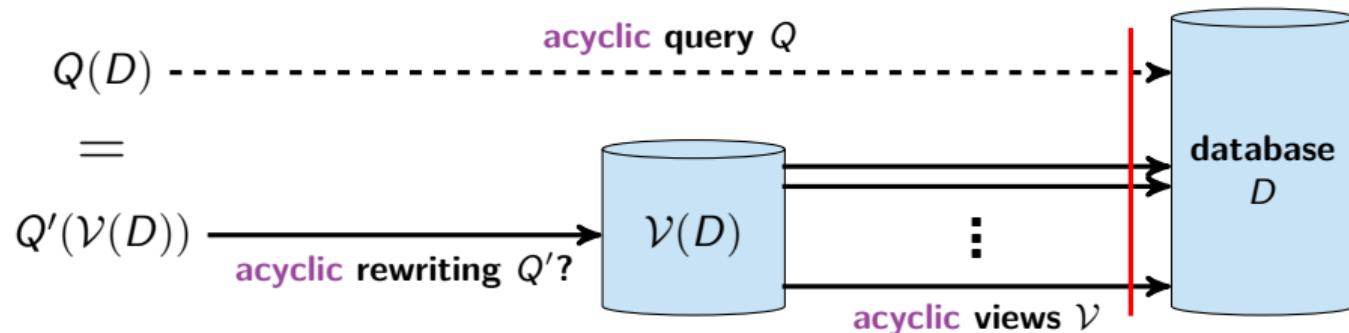


Complexity Results – The Good News



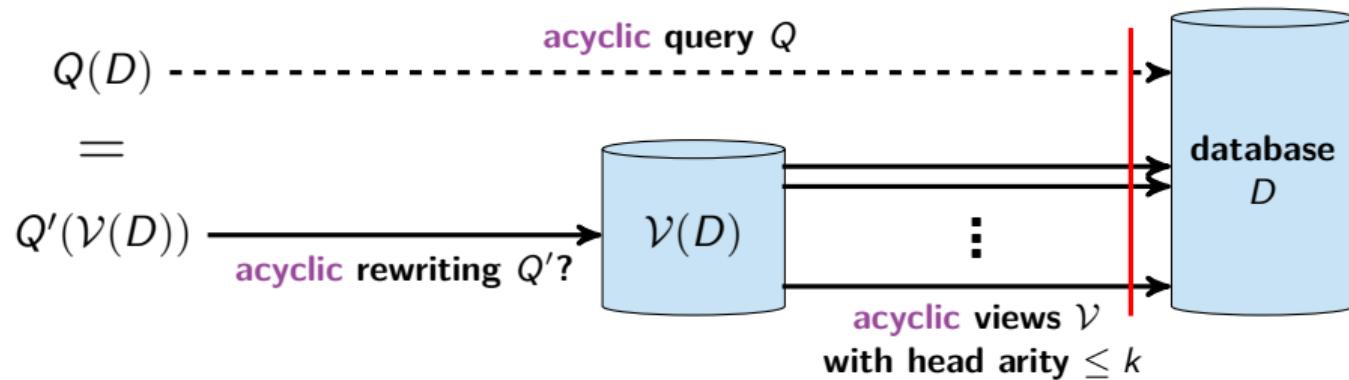
For tractability: Mind your head!

Complexity Results – The Good News



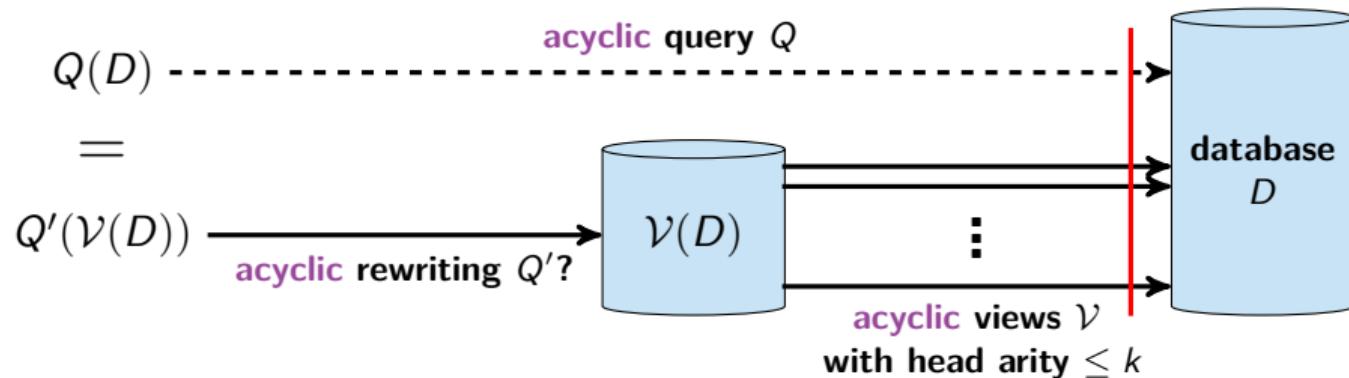
For tractability: Mind the views' heads!

Complexity Results – The Good News



For tractability: Mind the views' heads!

Complexity Results – The Good News



Theorem

For every $k \geq 0$ the *acyclic* rewriting problem for

- *acyclic* queries and
- *acyclic* views with heads of arity at most k

is in *polynomial time*.

Complexity Results – The Good News



Theorem

For every $k \geq 0$ the *acyclic* rewriting problem for

- *acyclic* queries and
- *acyclic* views with heads of arity at most k

is in *polynomial time*.

- If an *acyclic* rewriting exists, it can be computed in *polynomial time*

Acyclic Views with Bounded Head Arity

Proposition (Nash, Segoufin, and Vianu 2010)

For every

- *conjunctive query and*
- *views defined by conjunctive queries*

there is a rewriting, if and only if the canonical candidate is a rewriting.

Acyclic Views with Bounded Head Arity

Proposition (Nash, Segoufin, and Vianu 2010)

For every

- *conjunctive query and*
- *views defined by conjunctive queries*

there is a rewriting, if and only if the canonical candidate is a rewriting.

Algorithm

- ① Compute the canonical candidate

Acyclic Views with Bounded Head Arity

Proposition (Nash, Segoufin, and Vianu 2010)

For every

- *conjunctive query and*
- *views defined by conjunctive queries*

there is a rewriting, if and only if the canonical candidate is a rewriting.

Algorithm

- ① Compute the canonical candidate
- ② Test whether the canonical candidate is a rewriting

Acyclic Views with Bounded Head Arity

Proposition (Nash, Segoufin, and Vianu 2010)

For every

- *conjunctive query and*
- *views defined by conjunctive queries*

there is a rewriting, if and only if the canonical candidate is a rewriting.

Algorithm

- ① Compute the canonical candidate
- ② Test whether the canonical candidate is a rewriting
- ③ Transform the canonical candidate into an acyclic rewriting

Acyclic Views with Bounded Head Arity

Proposition (Nash, Segoufin, and Vianu 2010)

For every

- *conjunctive query and*
- *views defined by conjunctive queries*

there is a rewriting, if and only if the canonical candidate is a rewriting.

Algorithm

- ① Compute the canonical candidate
- ② Test whether the canonical candidate is a rewriting
 - in polynomial time for acyclic queries
- ③ Transform the canonical candidate into an acyclic rewriting

Acyclic Views with Bounded Head Arity

Proposition (Nash, Segoufin, and Vianu 2010)

For every

- *conjunctive query and*
- *views defined by conjunctive queries*

there is a rewriting, if and only if the canonical candidate is a rewriting.

Algorithm

- ① Compute the canonical candidate
 - can be of **exponential size** for **acyclic** views
 - is of **polynomial size** for **acyclic** views with **bounded head arity**
- ② Test whether the canonical candidate is a rewriting
 - in **polynomial time** for **acyclic** queries
- ③ Transform the canonical candidate into an **acyclic** rewriting

The Canonical Candidate

Query

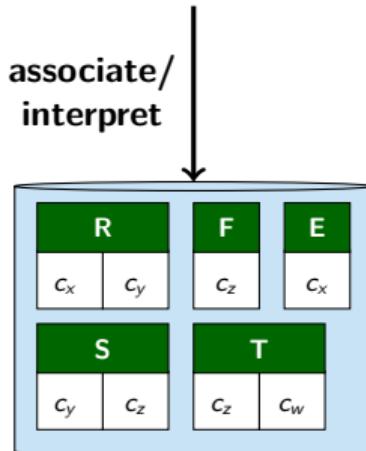
$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

The Canonical Candidate

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$


Views

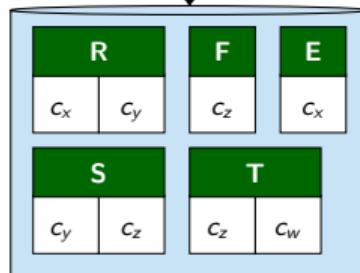
$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

The Canonical Candidate

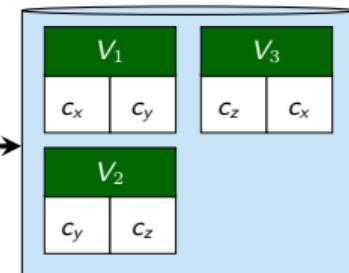
Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

associate/
interpret



evaluate views



Views

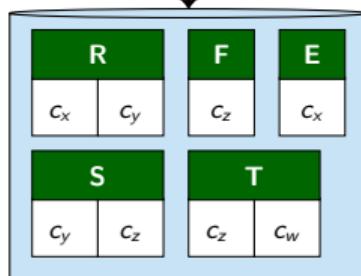
$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$
$$V_2(y, z) \leftarrow S(y, z), F(z)$$
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

The Canonical Candidate

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

associate/
interpret

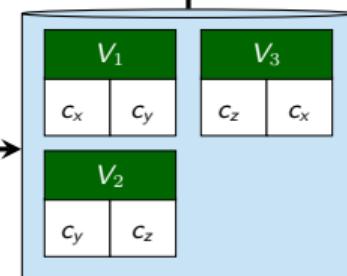


evaluate views

Canonical Candidate/Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

associate/
interpret



Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$

$$V_2(y, z) \leftarrow S(y, z), F(z)$$

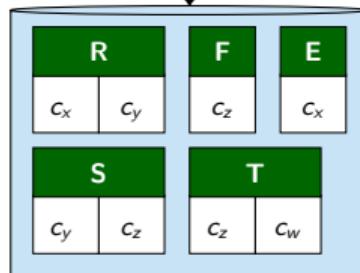
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

The Canonical Candidate

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

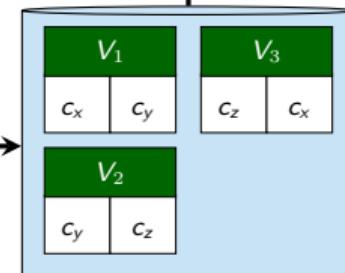
associate/
interpret



Canonical Candidate/Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

associate/
interpret



Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$

$$V_2(y, z) \leftarrow S(y, z), F(z)$$

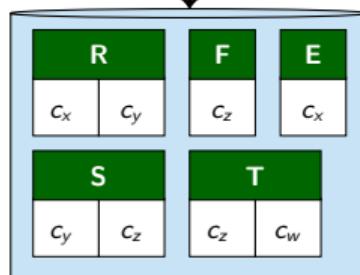
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

The Canonical Candidate

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

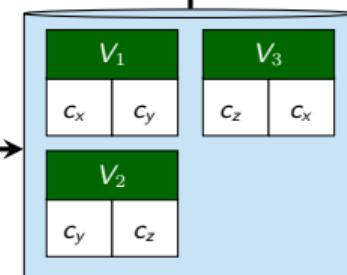
associate/
interpret



Canonical Candidate/Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

associate/
interpret



Views

$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$

$$V_2(y, z) \leftarrow S(y, z), F(z)$$

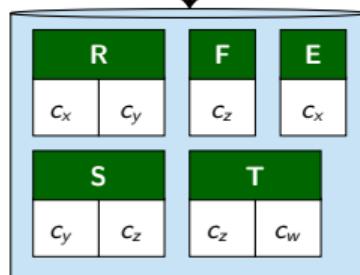
$$V_3(z, x) \leftarrow E(x), T(z, w)$$

The Canonical Candidate

Query

$$H(x, y) \leftarrow R(x, y), S(y, z), F(z), E(x), T(z, w)$$

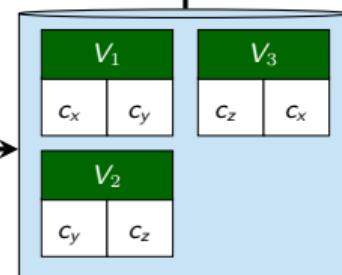
associate/
interpret



Canonical Candidate/Rewriting

$$H(x, y) \leftarrow V_1(x, y), V_2(y, z), V_3(z, x)$$

associate/
interpret



Views

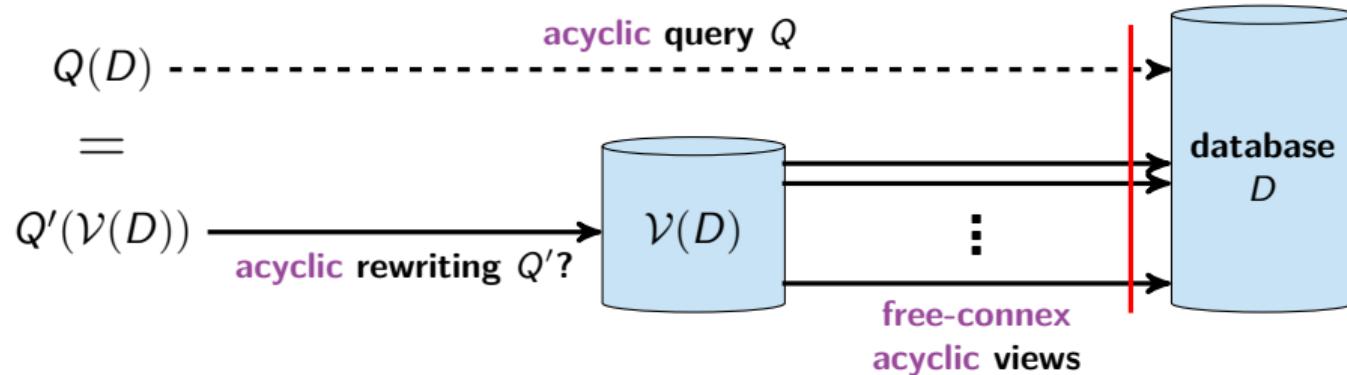
$$V_1(x, y) \leftarrow R(x, y), S(y, z)$$

$$V_2(y, z) \leftarrow S(y, z), F(z)$$

$$V_3(z, x) \leftarrow E(x), T(z, w)$$

is of polynomial size for views
with bounded head arity

Complexity Results – The Good News



Free-Connex Acyclic Views

A conjunctive query is **free-connex acyclic** if

- it is **acyclic** and
- there is a **join tree** which includes the query's head atom

Free-Connex Acyclic Views

A conjunctive query is **free-connex acyclic** if

- it is **acyclic** and
- there is a **join tree** which includes the query's head atom

Example

$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$ is **free-connex acyclic**

Free-Connex Acyclic Views

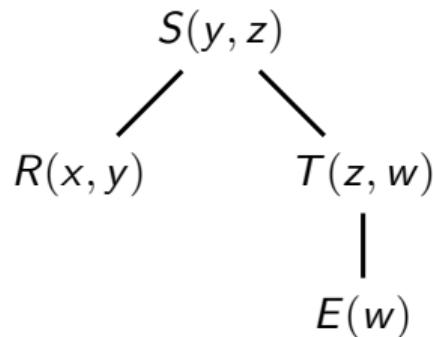
A conjunctive query is **free-connex acyclic** if

- it is **acyclic** and
- there is a **join tree** which includes the query's head atom

Example

$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$ is **free-connex acyclic**

Join tree



Free-Connex Acyclic Views

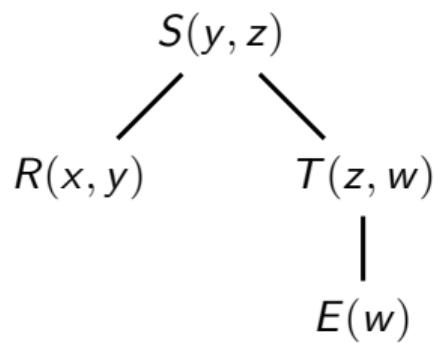
A conjunctive query is **free-connex acyclic** if

- it is **acyclic** and
- there is a **join tree** which includes the query's head atom

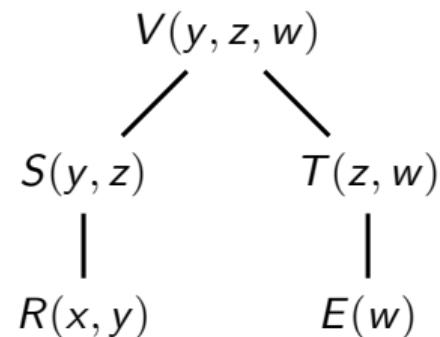
Example

$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$ is **free-connex acyclic**

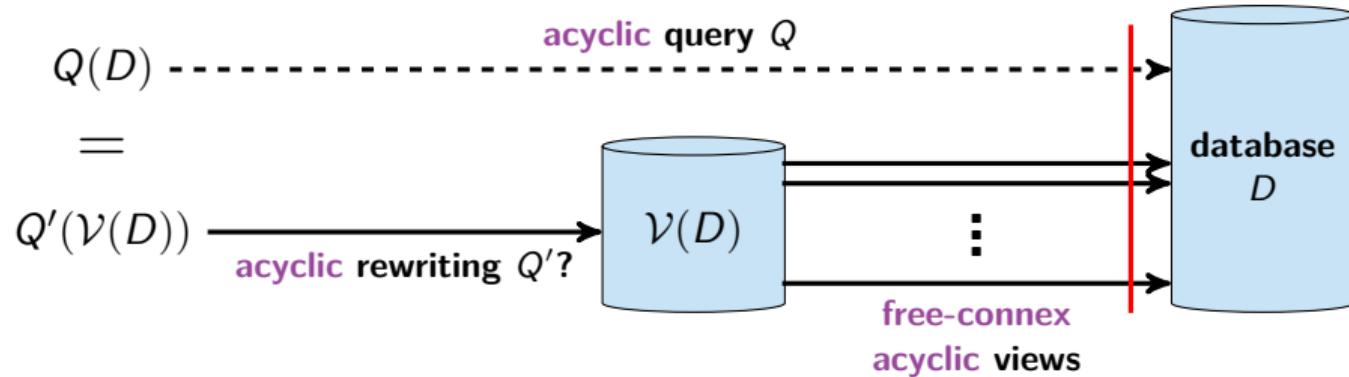
Join tree



Join tree (with head atom)



Free-Connex Acyclic Views



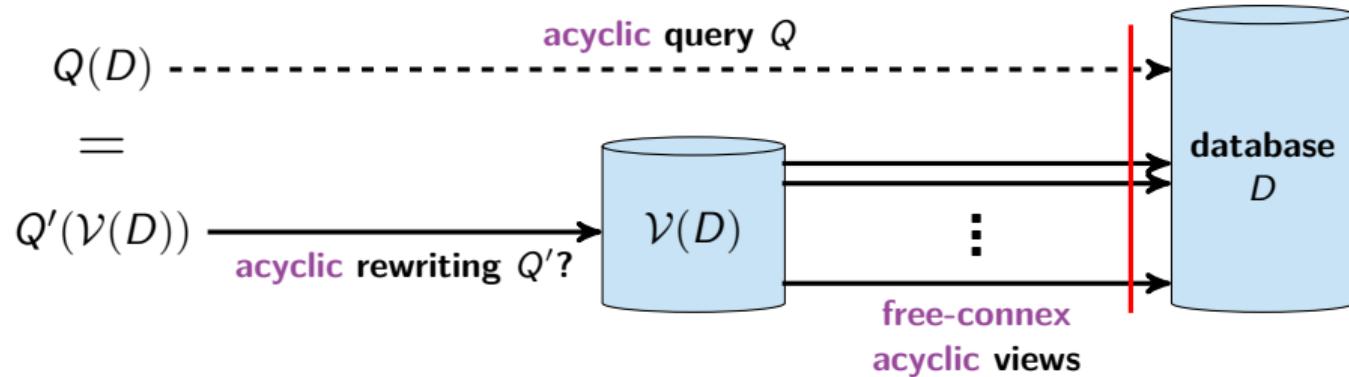
Theorem

For every $k \geq 0$ the *acyclic* rewriting problem for

- *acyclic queries and*
- *free-connex acyclic views*
- *over a database schema of arity at most k*

is in polynomial time.

Free-Connex Acyclic Views



Theorem

For every $k \geq 0$ the **acyclic** rewriting problem for

- **acyclic** queries and
- **free-connex acyclic** views
- over a database schema of arity at most k

is in **polynomial time**.

- If an **acyclic** rewriting exists, it can be computed in **polynomial time**

Free-Connex Acyclic Views

View

$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$

Database relations have arity at most $k = 2$

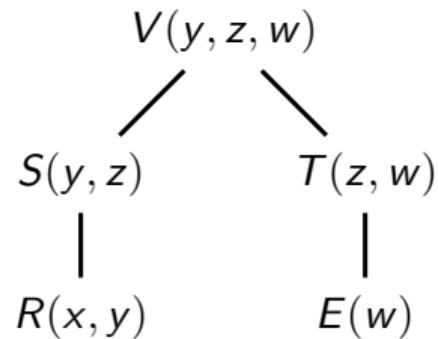
Free-Connex Acyclic Views

View

$$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

Database relations have arity at most $k = 2$

Join tree (with head atom)



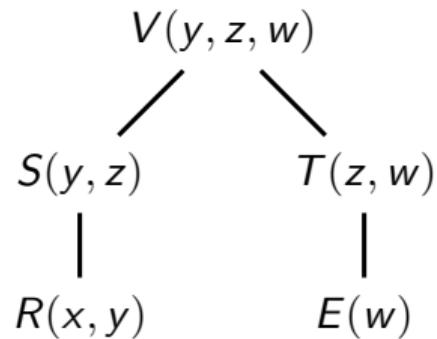
Free-Connex Acyclic Views

View

$$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

Database relations have arity at most $k = 2$

Join tree (with head atom)



Algorithm

- ① Root the tree at the head atom

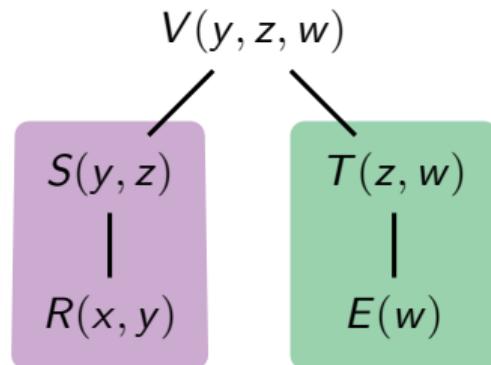
Free-Connex Acyclic Views

View

$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$

Database relations have arity at most $k = 2$

Join tree (with head atom)



Algorithm

- ① Root the tree at the head atom

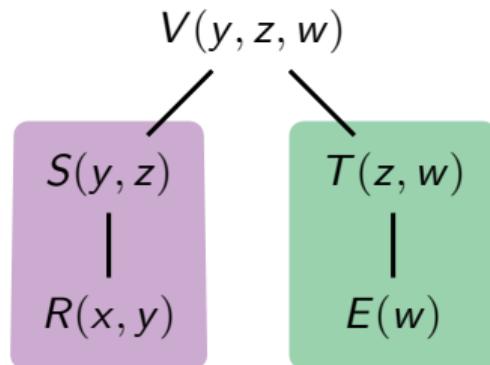
Free-Connex Acyclic Views

View

$$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

Database relations have arity at most $k = 2$

Join tree (with head atom)



Algorithm

- ① Root the tree at the head atom
- ② For each subtree create a view with head arity $\leq k = 2$

$$V_1(y, z) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

$$V_2(z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

$V(y, z, w)$ is “equivalent” to $V_1(y, z)$, $V_2(z, w)$

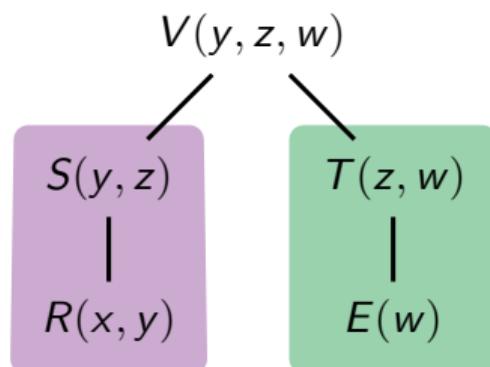
Free-Connex Acyclic Views

View

$$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

Database relations have arity at most $k = 2$

Join tree (with head atom)



Algorithm

- ① Root the tree at the head atom
- ② For each subtree create a view with head arity $\leq k = 2$

$$V_1(y, z) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

$$V_2(z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

$V(y, z, w)$ is “equivalent” to $V_1(y, z), V_2(z, w)$

- ③ Compute a rewriting with views V_1, V_2 (or return “false” if none exists)

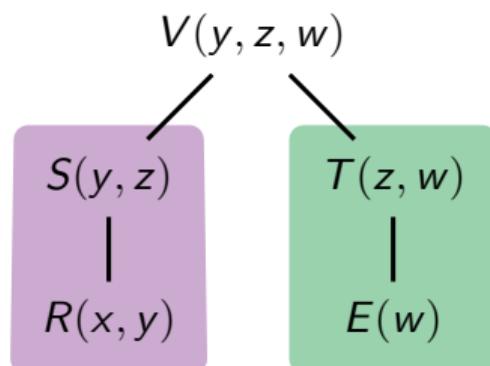
Free-Connex Acyclic Views

View

$$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

Database relations have arity at most $k = 2$

Join tree (with head atom)



Algorithm

- 1 Root the tree at the head atom
- 2 For each subtree create a view with head arity $\leq k = 2$

$$V_1(y, z) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

$$V_2(z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

$V(y, z, w)$ is “equivalent” to $V_1(y, z)$, $V_2(z, w)$

- 3 Compute a rewriting with views V_1 , V_2 (or return “false” if none exists)
- 4 Replace every atom $V_1(u, v)$ with an atom $V(u, v, w')$ where w' is a fresh variable

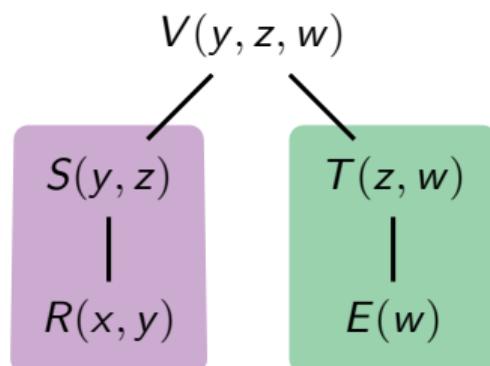
Free-Connex Acyclic Views

View

$$V(y, z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

Database relations have arity at most $k = 2$

Join tree (with head atom)



Algorithm

- ① Root the tree at the head atom
- ② For each subtree create a view with head arity $\leq k = 2$

$$V_1(y, z) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

$$V_2(z, w) \leftarrow R(x, y), S(y, z), T(z, w), E(w)$$

$V(y, z, w)$ is “equivalent” to $V_1(y, z)$, $V_2(z, w)$

- ③ Compute a rewriting with views V_1 , V_2 (or return “false” if none exists)
- ④ Replace every atom $V_1(u, v)$ with an atom $V(u, v, w')$ where w' is a fresh variable
- ⑤ Analogously for atoms $V_2(u, v)$

Conclusion

Summary

- If there is any rewriting for an **acyclic** query, then there is an **acyclic** rewriting
- The **acyclic** rewriting problem is **NP-complete** for **acyclic** queries and **acyclic** views
- The **acyclic** rewriting problem is in **polynomial time** for **acyclic** queries and
 - **acyclic** views with **bounded head arity**
 - **free-connex acyclic** views if the arity of the database schema is bounded

Conclusion

Summary

- If there is any rewriting for an **acyclic** query, then there is an **acyclic** rewriting
- The **acyclic** rewriting problem is **NP-complete** for **acyclic** queries and **acyclic** views
- The **acyclic** rewriting problem is in **polynomial time** for **acyclic** queries and
 - **acyclic** views with **bounded head arity**
 - **free-connex acyclic** views if the arity of the database schema is bounded

Further Prospects

- The result for **free-connex acyclic** views can be generalised to **acyclic** views with **bounded weak head arity**
- Analogous results for **hierarchical** and **q-hierarchical** queries

Conclusion

Summary

- If there is any rewriting for an **acyclic** query, then there is an **acyclic** rewriting
- The **acyclic** rewriting problem is **NP-complete** for **acyclic** queries and **acyclic** views
- The **acyclic** rewriting problem is in **polynomial time** for **acyclic** queries and
 - **acyclic** views with **bounded head arity**
 - **free-connex acyclic** views if the arity of the database schema is bounded

Further Prospects

- The result for **free-connex acyclic** views can be generalised to **acyclic** views with **bounded weak head arity**
- Analogous results for **hierarchical** and **q-hierarchical** queries

Mind your head!

References

- Levy, Alon Y., Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava (1995). "Answering Queries Using Views." In: Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. Ed. by Mihalis Yannakakis and Serge Abiteboul. ACM Press, pp. 95–104.
- Nash, Alan, Luc Segoufin, and Victor Vianu (2010). "Views and queries: Determinacy and rewriting." In: ACM Trans. Database Syst. 35.3, 21:1–21:41.