

Decision Problems for Subclasses of Rational Relations over Finite and Infinite Words

Christof Löding¹ Christopher Spinrath²

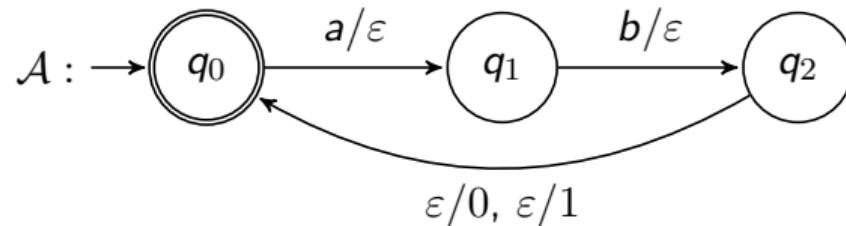
¹RWTH Aachen University

²TU Dortmund University

FCT2017 11.09.2017

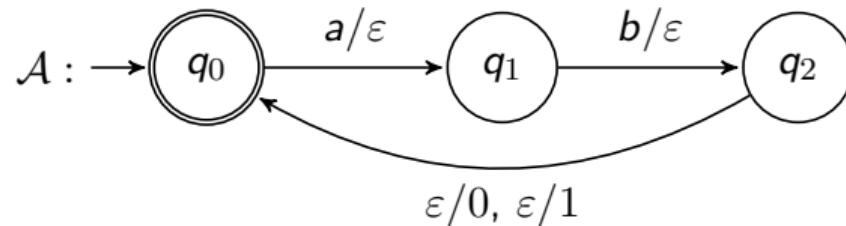
Rational Relations

- relations over **finite** words
- defined by **transducers** (non-deterministic multi-tape “automata”)
- Example:



Rational Relations

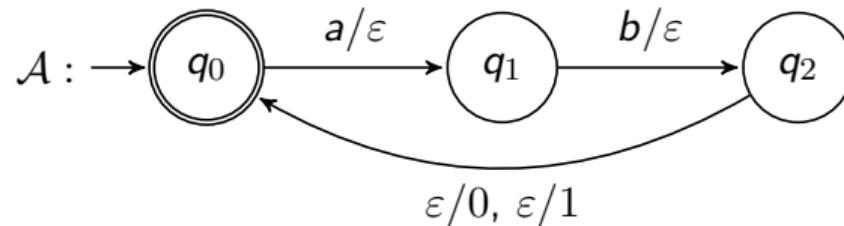
- relations over **finite** words
- defined by **transducers** (non-deterministic multi-tape “automata”)
- Example:



- $R_*(\mathcal{A}) = \{((ab)^n, v) \mid n \in \mathbb{N}, v \in \{0, 1\}^n\}$
- e.g. $(abab, 10), (abab, 00) \in R_*(\mathcal{A})$

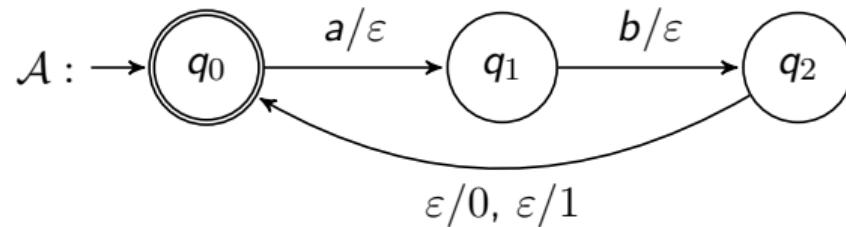
ω -Rational Relations

- relations over infinite words
- defined by transducers (non-deterministic multi-tape “automata”)
- Example:



ω -Rational Relations

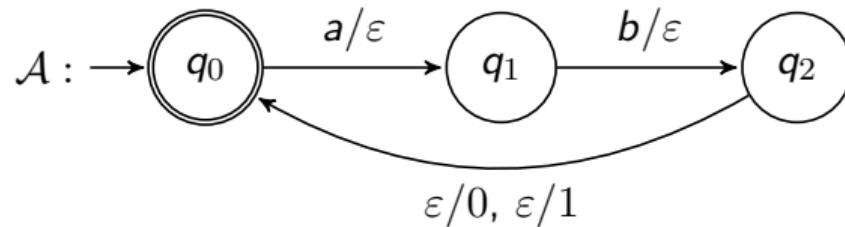
- relations over **infinite** words
- defined by **transducers** (non-deterministic multi-tape “automata”)
- Example:



- Büchi acceptance condition (visit an accepting state infinitely often)

ω -Rational Relations

- relations over **infinite** words
- defined by **transducers** (non-deterministic multi-tape “automata”)
- Example:



- Büchi acceptance condition (visit an accepting state infinitely often)
- $R_\omega(\mathcal{A}) = \{((ab)^\omega, v) \mid v \in \{0,1\}^\omega\}$
- e.g. $((ab)^\omega, 0^\omega), ((ab)^\omega, (10)^\omega) \in R_\omega(\mathcal{A})$

Outline

The equivalence problem for transducers

$$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$$

Outline

The equivalence problem for transducers

$$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$$

Deciding recognizability for (ω -)automatic relations

$$R \stackrel{?}{=} \bigcup_{i=1}^n L_i \times K_i$$

The Equivalence Problem

	finite words	infinite words
Given:	$R_*(\mathcal{A}) \stackrel{?}{=} R_*(\mathcal{B})$	$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$
transducers \mathcal{A}, \mathcal{B}		

The Equivalence Problem

	finite words	infinite words
Given:	$R_*(\mathcal{A}) \stackrel{?}{=} R_*(\mathcal{B})$	$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$
transducers \mathcal{A}, \mathcal{B}	undecidable	

The Equivalence Problem

	finite words	infinite words
Given:	$R_*(\mathcal{A}) \stackrel{?}{=} R_*(\mathcal{B})$	$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$
transducers \mathcal{A}, \mathcal{B}	undecidable	undecidable

The Equivalence Problem

	finite words	infinite words
Given:	$R_*(\mathcal{A}) \stackrel{?}{=} R_*(\mathcal{B})$	$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$
transducers \mathcal{A}, \mathcal{B}	undecidable	undecidable
deterministic transducers \mathcal{A}, \mathcal{B}	decidable	

The Equivalence Problem

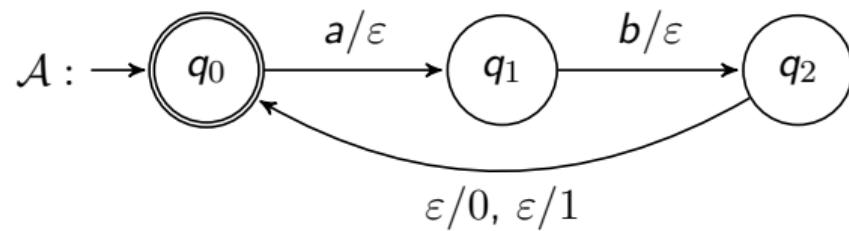
	finite words	infinite words
Given:	$R_*(\mathcal{A}) \stackrel{?}{=} R_*(\mathcal{B})$	$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$
transducers \mathcal{A}, \mathcal{B}	undecidable	undecidable
deterministic transducers \mathcal{A}, \mathcal{B}	decidable	undecidable

Theorem (this work)

The equivalence problem for deterministic Büchi transducers is undecidable.

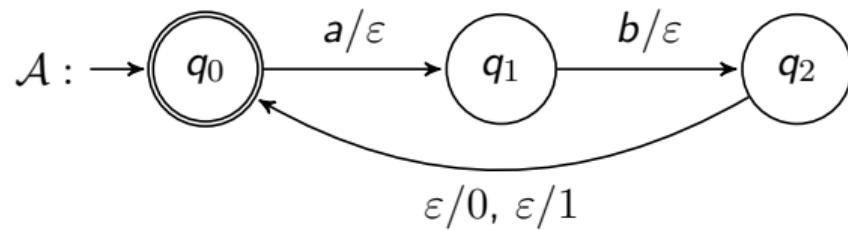
Deterministic (ω -)Rational Relations

deterministic (Büchi) transducers



Deterministic (ω -)Rational Relations

deterministic (Büchi) transducers



- ① state **determines** the component to be read
- ② state and letter **determine** the next state

The Equivalence Problem

\mathcal{A}, \mathcal{B} deterministic (Büchi) transducers

Aim

$$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$$

undecidable

The Equivalence Problem

\mathcal{A}, \mathcal{B} deterministic (Büchi) transducers

Aim	Known
$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$	$R_*(\mathcal{A}) \stackrel{?}{=} R_*(\mathcal{B})$
undecidable	decidable

The Equivalence Problem

\mathcal{A}, \mathcal{B} deterministic (Büchi) transducers

Known	Aim	Known
$R_*(\mathcal{A}) \cap R_*(\mathcal{B}) \stackrel{?}{=} \emptyset$	\leq	$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$
undecidable	undecidable	decidable

The Equivalence Problem

\mathcal{A}, \mathcal{B} deterministic (Büchi) transducers

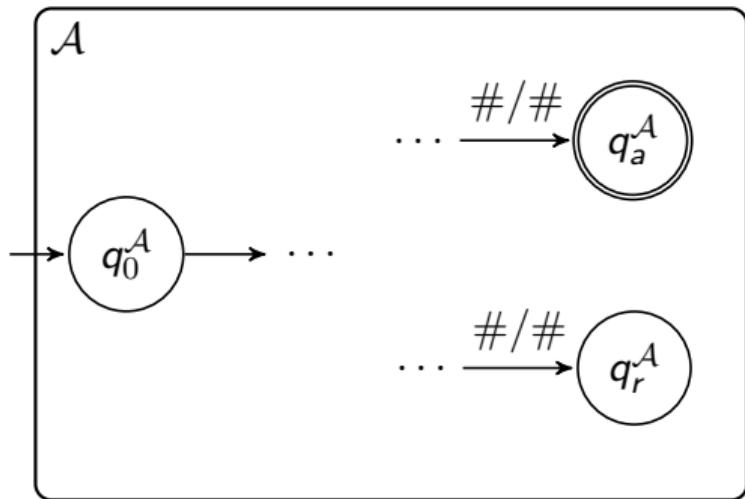
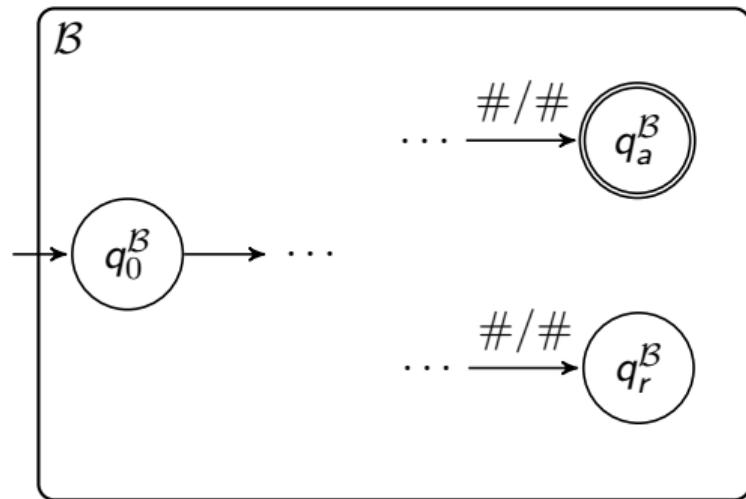
Known	Aim	Known
$R_*(\mathcal{A}) \cap R_*(\mathcal{B}) \stackrel{?}{=} \emptyset$	\leq	$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$
undecidable	undecidable	decidable

$$(\mathcal{A}, \mathcal{B}) \mapsto (\mathcal{A}', \mathcal{B}')$$
$$\rightsquigarrow R_*(\mathcal{A}) \cap R_*(\mathcal{B}) \neq \emptyset \Leftrightarrow R_\omega(\mathcal{A}') \neq R_\omega(\mathcal{B}')$$

The reduction is based on an idea of Böhm, Göller, Halfon, and Hofman 2017

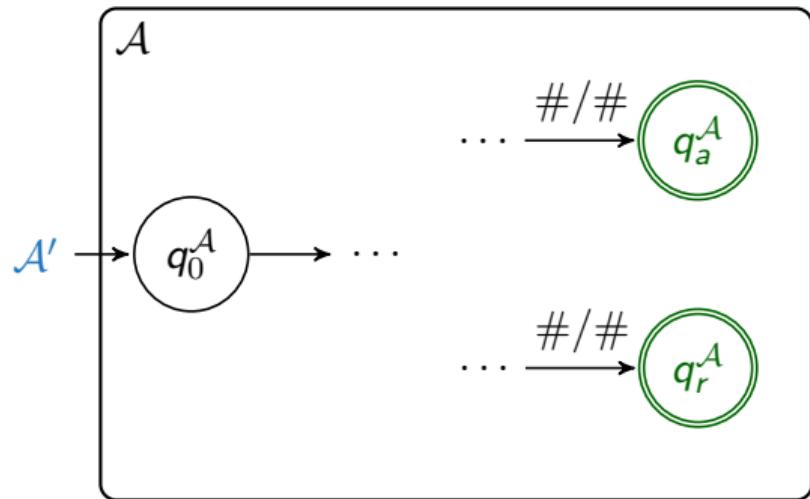
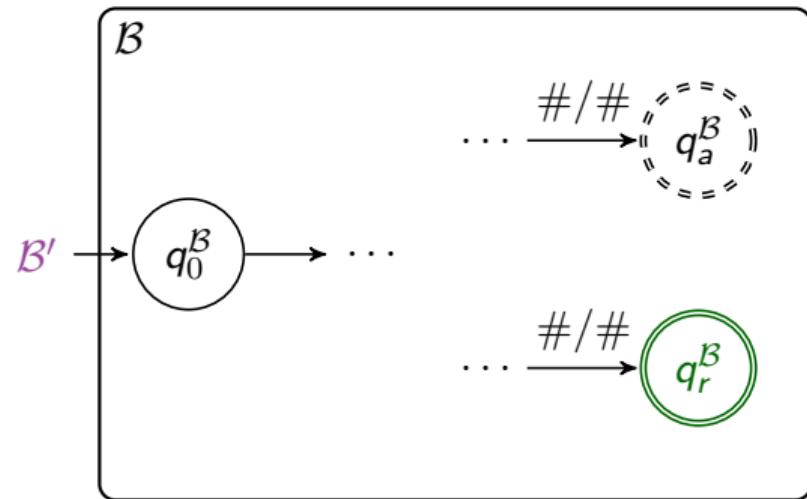
The Equivalence Problem — Reduction

$$R_*(\mathcal{A}) \cap R_*(\mathcal{B}) \neq \emptyset \Leftrightarrow R_\omega(\mathcal{A}') \neq R_\omega(\mathcal{B}')$$



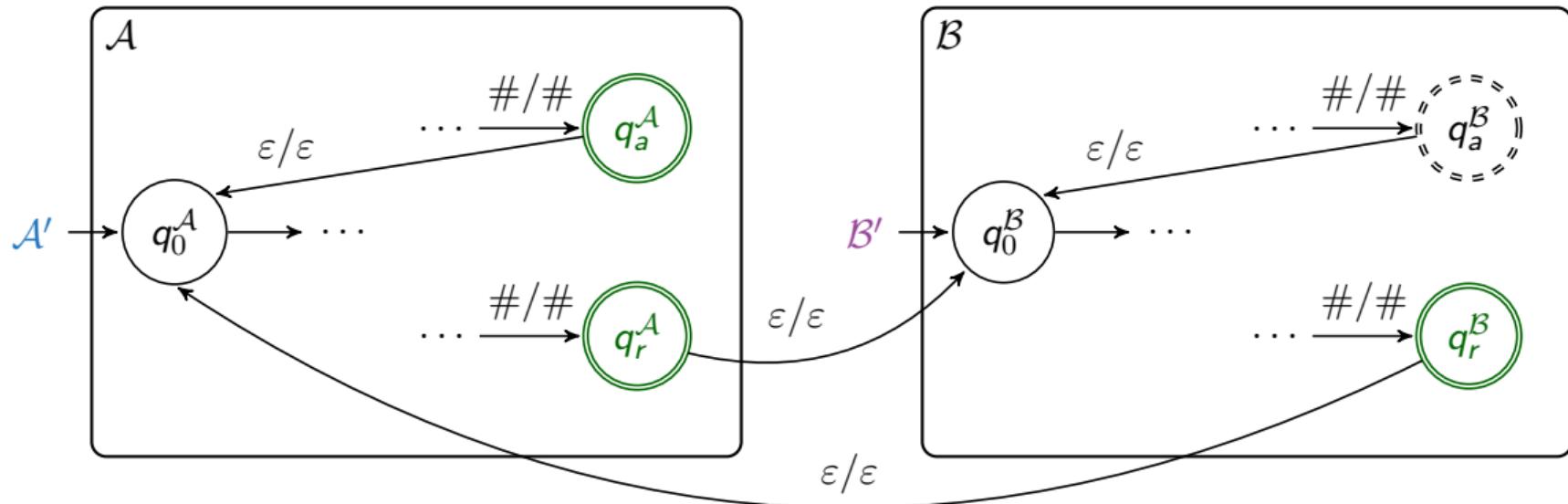
The Equivalence Problem — Reduction

$$R_*(\mathcal{A}) \cap R_*(\mathcal{B}) \neq \emptyset \Leftrightarrow R_\omega(\mathcal{A}') \neq R_\omega(\mathcal{B}')$$



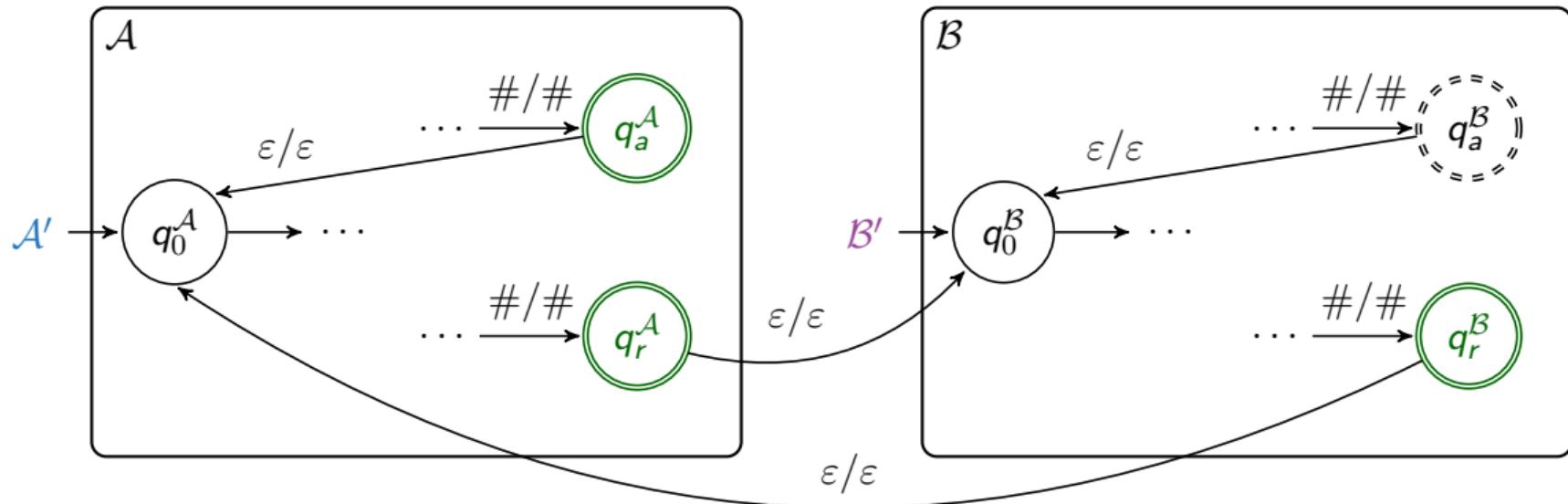
The Equivalence Problem — Reduction

$$R_*(\mathcal{A}) \cap R_*(\mathcal{B}) \neq \emptyset \Leftrightarrow R_\omega(\mathcal{A}') \neq R_\omega(\mathcal{B}')$$



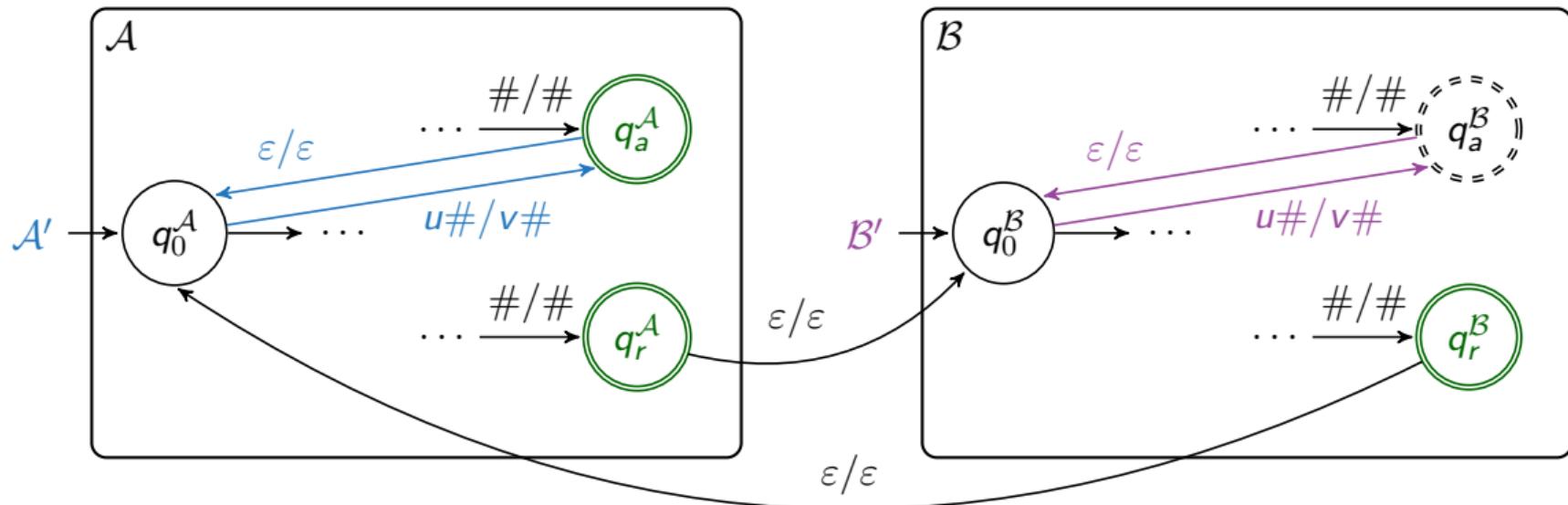
The Equivalence Problem — Reduction

$$(u\#, v\#) \in R_*(\mathcal{A}) \cap R_*(\mathcal{B}) \Rightarrow (u\#, v\#)^\omega \in R_\omega(\mathcal{A}') \setminus R_\omega(\mathcal{B}')$$



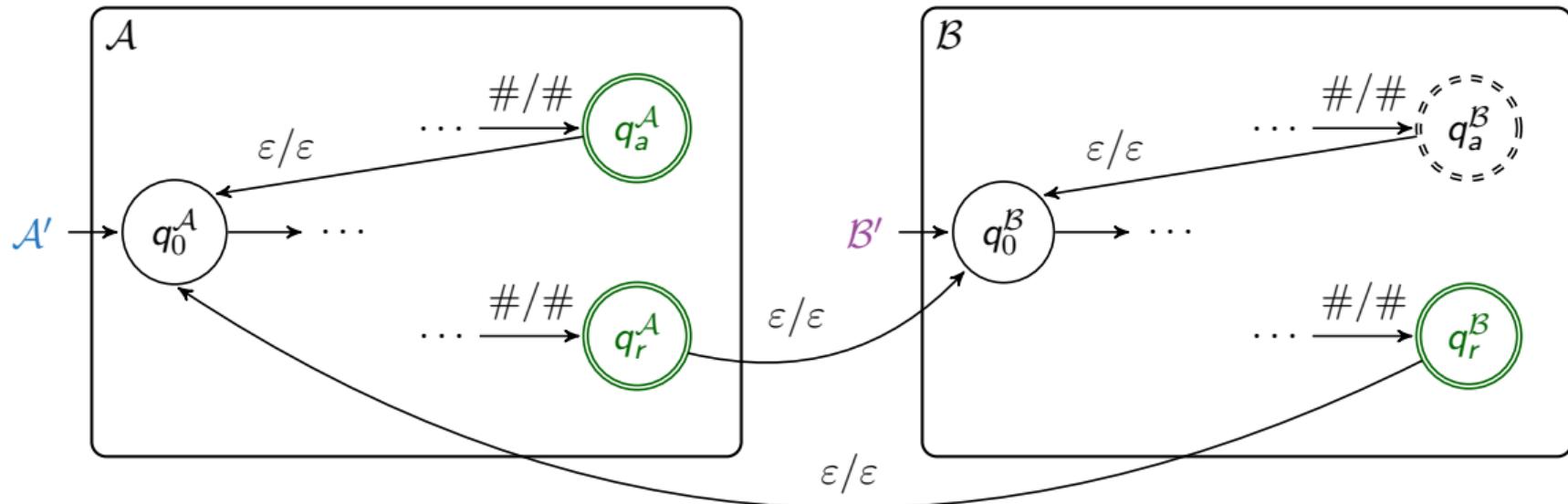
The Equivalence Problem — Reduction

$$(u\#, v\#) \in R_*(\mathcal{A}) \cap R_*(\mathcal{B}) \Rightarrow (u\#, v\#)^\omega \in R_\omega(\mathcal{A}') \setminus R_\omega(\mathcal{B}')$$



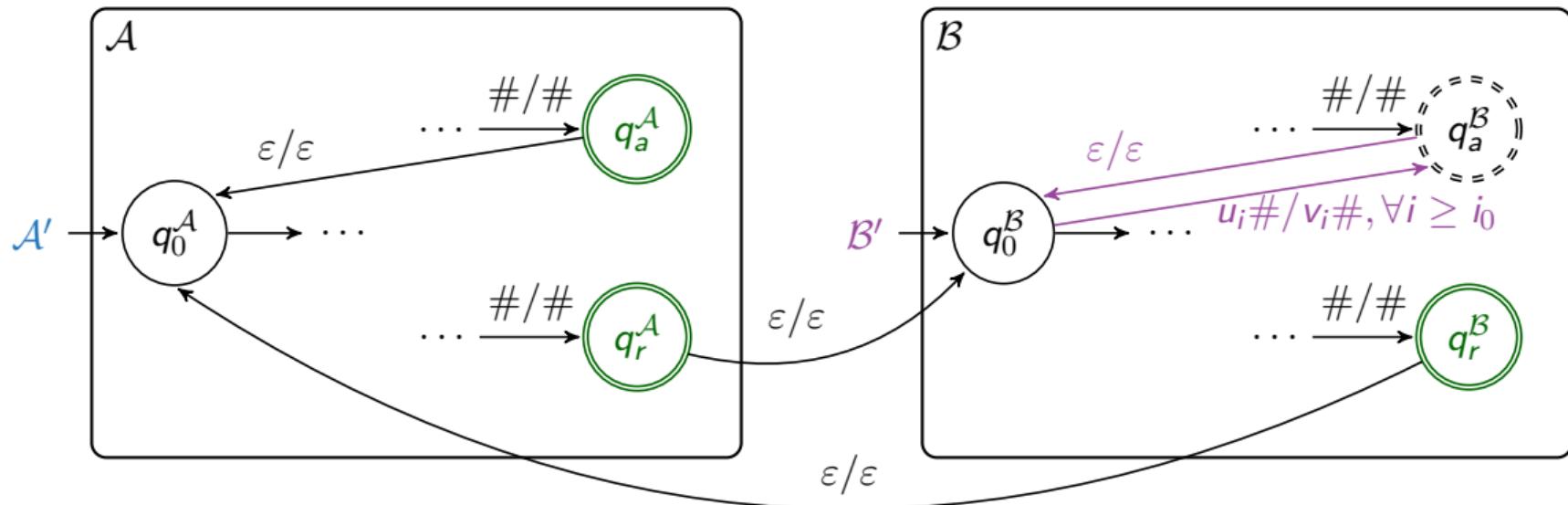
The Equivalence Problem — Reduction

$$(u_1\#, v_1\#)(u_2\#, v_2\#)\dots \in R_\omega(\mathcal{A}') \setminus R_\omega(\mathcal{B}') \Rightarrow \exists k : (u_k\#, v_k\#) \in R_*(\mathcal{A}) \cap R_*(\mathcal{B})$$



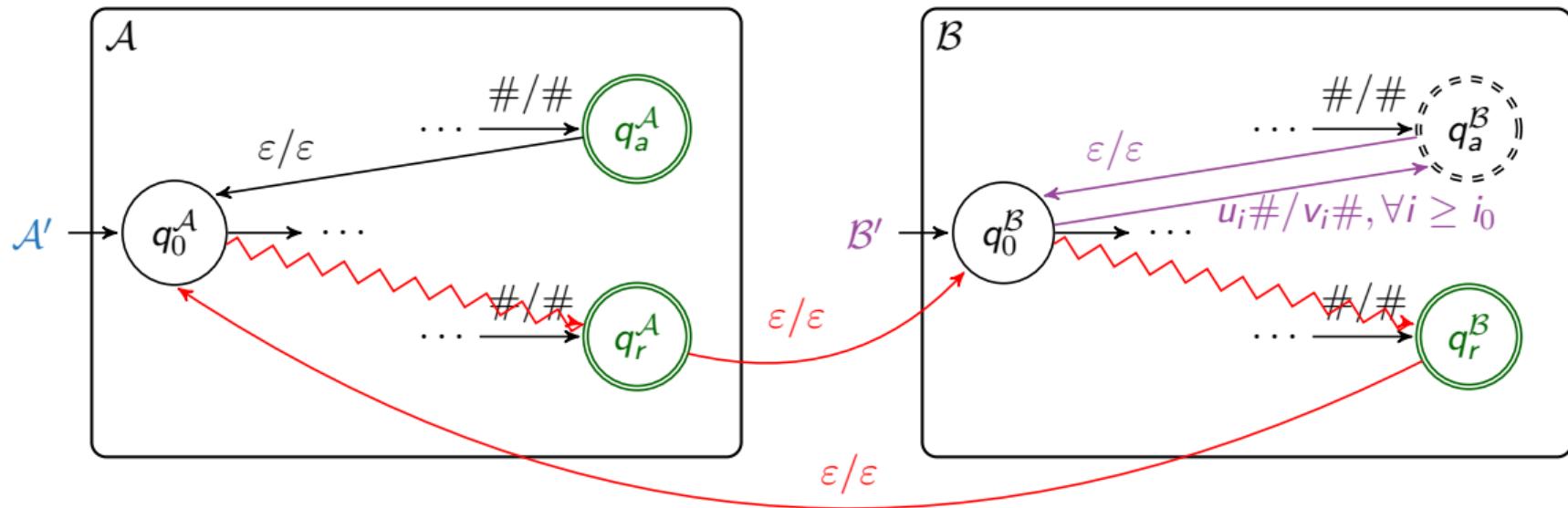
The Equivalence Problem — Reduction

$$(u_1\#, v_1\#)(u_2\#, v_2\#)\dots \in R_\omega(\mathcal{A}') \setminus R_\omega(\mathcal{B}') \Rightarrow \exists k : (u_k\#, v_k\#) \in R_*(\mathcal{A}) \cap R_*(\mathcal{B})$$



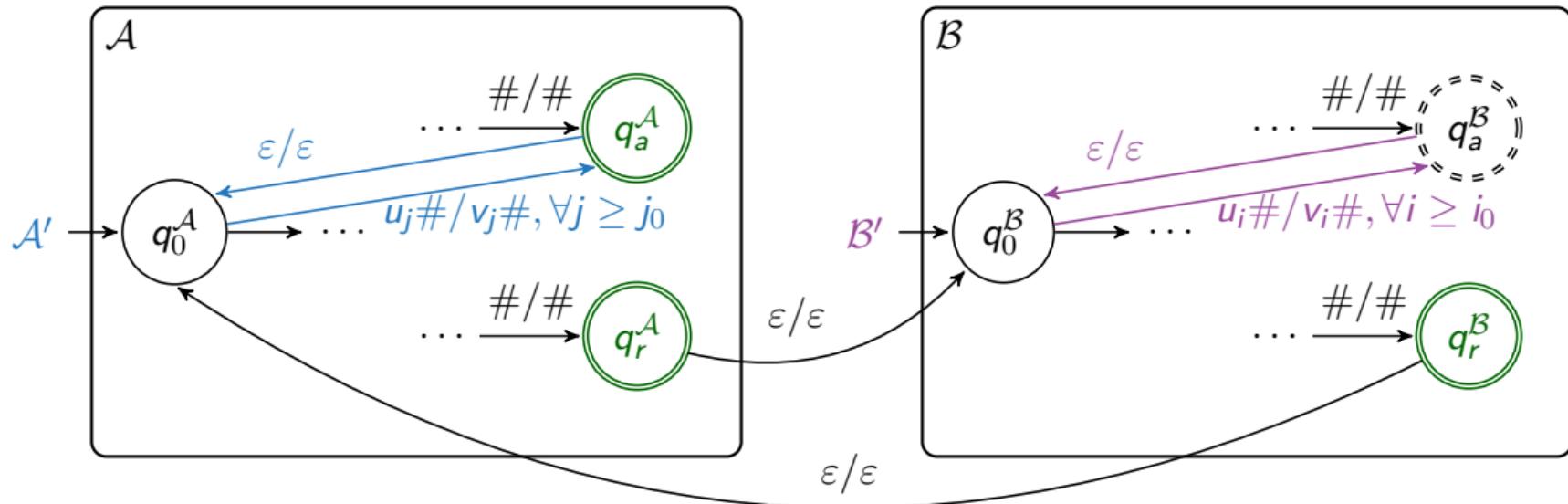
The Equivalence Problem — Reduction

$$(u_1\#, v_1\#)(u_2\#, v_2\#)\dots \in R_\omega(\mathcal{A}') \setminus R_\omega(\mathcal{B}') \Rightarrow \exists k : (u_k\#, v_k\#) \in R_*(\mathcal{A}) \cap R_*(\mathcal{B})$$



The Equivalence Problem — Reduction

$$(u_1\#, v_1\#)(u_2\#, v_2\#)\dots \in R_\omega(\mathcal{A}') \setminus R_\omega(\mathcal{B}') \Rightarrow \exists k : (u_k\#, v_k\#) \in R_*(\mathcal{A}) \cap R_*(\mathcal{B})$$



Outline

The equivalence problem for deterministic transducers

$$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$$

undecidable

Outline

The equivalence problem for **deterministic** transducers

$$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$$

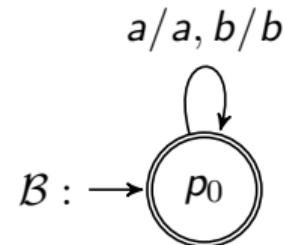
undecidable

Deciding recognizability for $(\omega\text{-})$ automatic relations

$$R \stackrel{?}{=} \bigcup_{i=1}^n L_i \times K_i$$

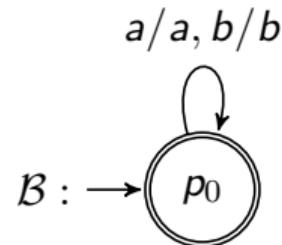
$(\omega\text{-})$ Automatic Relations

- **synchronous** transducer (single reading head)
- “automaton over a product alphabet”



$(\omega\text{-})$ Automatic Relations

- **synchronous** transducer (single reading head)
- “automaton over a product alphabet”

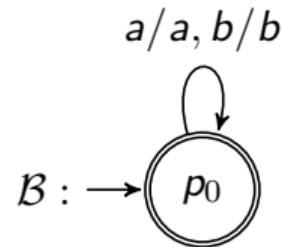


$$R_*(\mathcal{B}) = \{(u, u) \mid u \in \{a, b\}^*\}$$

$$R_\omega(\mathcal{B}) = \{(u, u) \mid u \in \{a, b\}^\omega\}$$

$(\omega\text{-})$ Automatic Relations

- **synchronous** transducer (single reading head)
- “automaton over a product alphabet”

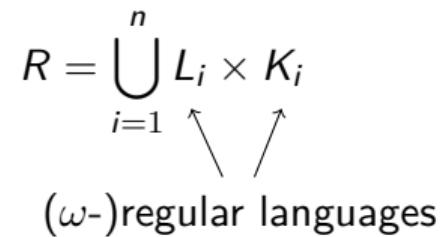


$$R_*(\mathcal{B}) = \{(u, u) \mid u \in \{a, b\}^*\}$$

$$R_\omega(\mathcal{B}) = \{(u, u) \mid u \in \{a, b\}^\omega\}$$

- finite words may be of **different length**

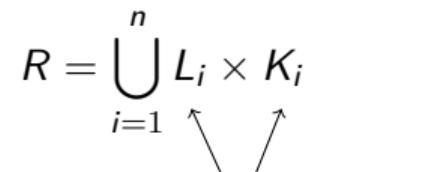
(ω -)Recognizable Relations

$$R = \bigcup_{i=1}^n L_i \times K_i$$


(ω -)regular languages

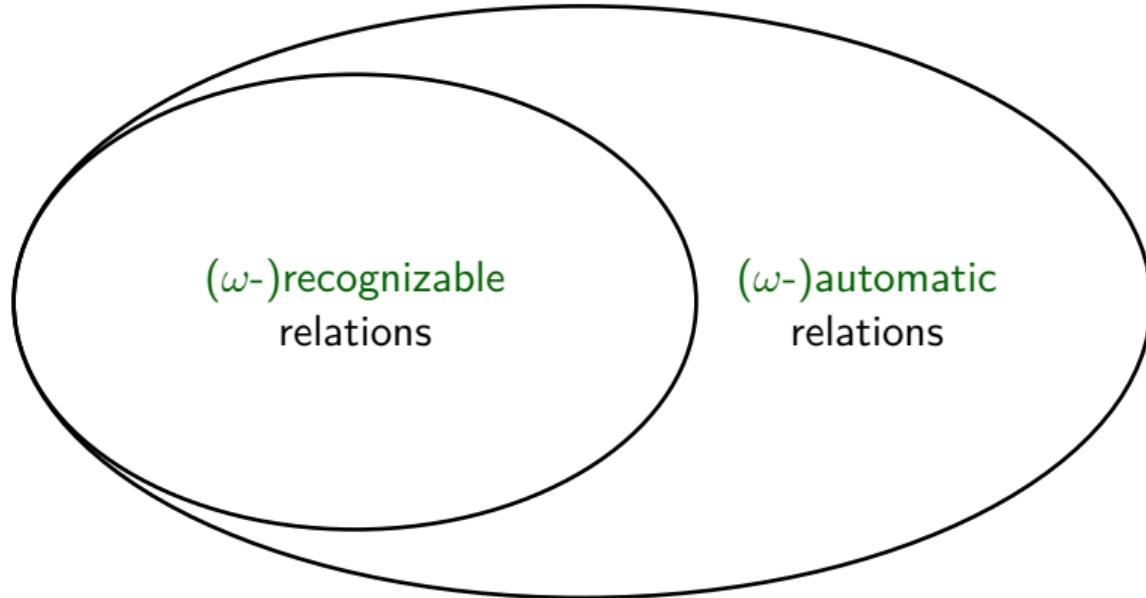
(ω -)Recognizable Relations

$$R = \bigcup_{i=1}^n L_i \times K_i$$

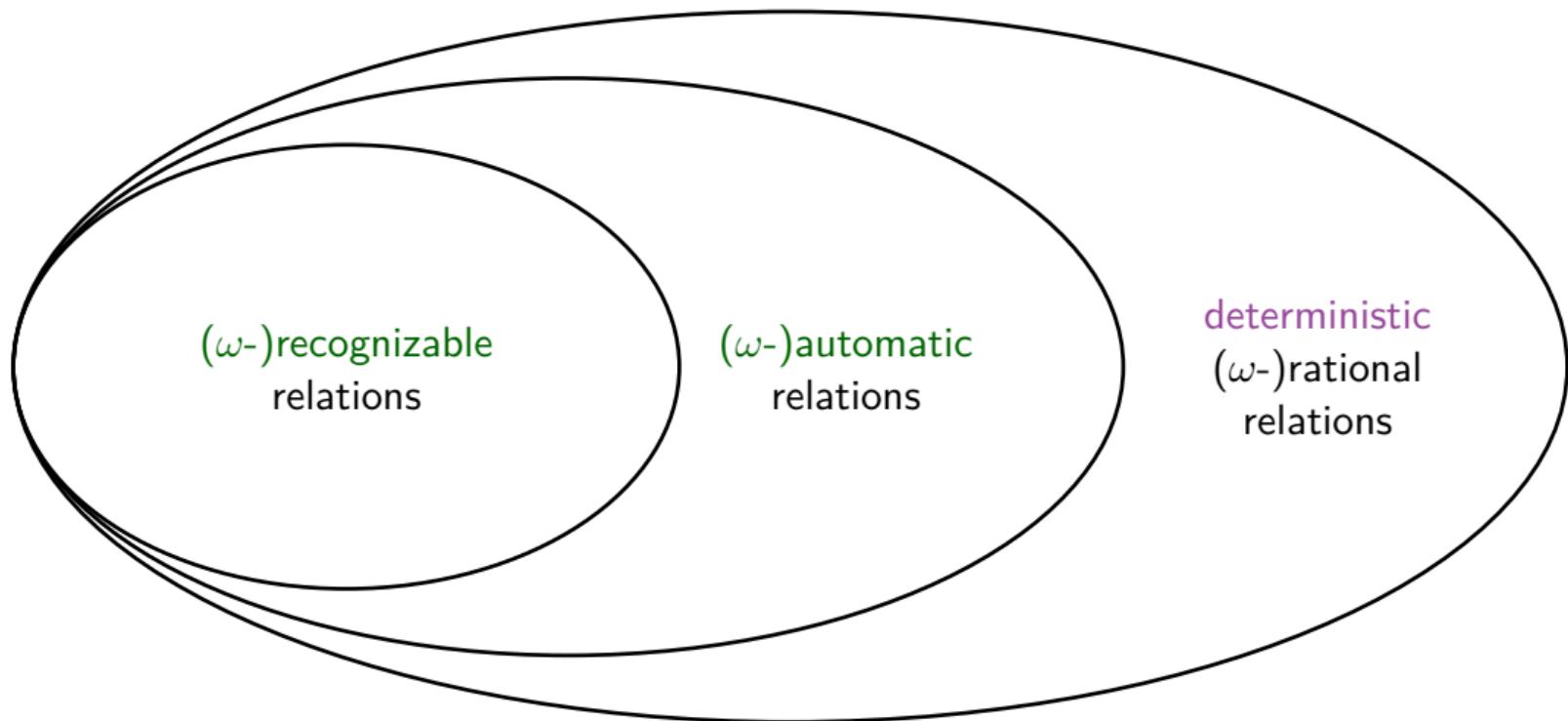

(ω -)regular languages

Example: $R = a^\omega \times a^\omega \cup b^\omega \times (a + b)^\omega$

$(\omega\text{-})$ Rational Relations – Hierarchy



$(\omega\text{-})$ Rational Relations – Hierarchy



Deciding Recognizability of (ω -)Automatic Relations

Deciding recognizability for (ω -)automatic relations

$$R \stackrel{?}{=} \bigcup_{i=1}^n L_i \times K_i$$

Deciding Recognizability of (ω -)Automatic Relations

Deciding recognizability for (ω -)automatic relations

$$R \stackrel{?}{=} \bigcup_{i=1}^n L_i \times K_i$$

Theorem (Carton, Choffrut, and Grigorieff 2006)

Recognizability for *automatic relations* is *decidable in doubly exponential time*.

Deciding Recognizability of (ω -)Automatic Relations

Deciding recognizability for (ω -)automatic relations

$$R \stackrel{?}{=} \bigcup_{i=1}^n L_i \times K_i$$

Theorem (Carton, Choffrut, and Grigorieff 2006)

Recognizability for *automatic relations* is *decidable in doubly exponential time*.

Theorem (this work)

Recognizability is *decidable for*

- ① *ω -automatic relations in doubly exponential time*,
- ② *binary automatic relations in exponential time*.

Summary

The equivalence problem for deterministic transducers

$$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$$

undecidable

Summary

The equivalence problem for deterministic transducers

$$R_\omega(\mathcal{A}) \stackrel{?}{=} R_\omega(\mathcal{B})$$

undecidable

Deciding recognizability

$$R \stackrel{?}{=} \bigcup_{i=1}^n L_i \times K_i$$

R ω -automatic

2EXPTIME

R binary automatic

EXPTIME

Literature

Böhm, Stanislav, Stefan Göller, Simon Halfon, and Piotr Hofman (2017). "On Büchi One-Counter Automata". In: 34th Symposium on Theoretical Aspects of Computer Science (STACS 2017). Ed. by Heribert Vollmer and Brigitte Vallée. Vol. 66. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 14:1–14:13.

Carton, Olivier, Christian Choffrut, and Serge Grigorieff (2006). "Decision problems among the main subfamilies of rational relations". In: RAIRO-Theoretical Informatics and Applications 40.02, pp. 255–275.