
Decision Problems for Subclasses of Rational Relations
over Finite and Infinite Words

Christof Löding1 Christopher Spinrath2

1RWTH Aachen University

2TU Dortmund University

FCT2017 11.09.2017

Christof Löding, Christopher Spinrath – Decision Problems for Subclasses of Rational Relations 1



Rational Relations

• relations over finite words
• defined by transducers (non-deterministic multi-tape “automata”)
• Example:

q0A : q1 q2
a/ε

ε/0, ε/1

b/ε

• R∗(A) = {((ab)n, v) | n ∈ N, v ∈ {0, 1}n}

• e.g. (abab, 10), (abab, 00) ∈ R∗(A)
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ω-Rational Relations

• relations over infinite words
• defined by transducers (non-deterministic multi-tape “automata”)
• Example:

q0A : q1 q2
a/ε

ε/0, ε/1

b/ε

• Büchi acceptance condition (visit an accepting state infinitely often)

• Rω(A) = {((ab)ω, v) | v ∈ {0, 1}ω}

• e.g. ((ab)ω, 0ω), ((ab)ω, (10)ω) ∈ Rω(A)
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Outline

The equivalence problem for transducers

Rω(A)
?
= Rω(B)

Deciding recognizability for (ω-)automatic relations

R ?
=

n⋃
i=1

Li × Ki
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The Equivalence Problem

finite words infinite words

Given: R∗(A)
?
= R∗(B) Rω(A)

?
= Rω(B)

transducers A,B

undecidable undecidable

deterministic transducers A,B decidable

undecidable

Theorem (this work)
The equivalence problem for deterministic Büchi transducers is undecidable.
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Deterministic (ω-)Rational Relations

deterministic (Büchi) transducers

q0A : q1 q2
a/ε

ε/0, ε/1

b/ε

1 state determines the component to be read
2 state and letter determine the next state
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The Equivalence Problem

A,B deterministic (Büchi) transducers

Known

Aim

Known

R∗(A) ∩ R∗(B)
?
= ∅ ≤

Rω(A)
?
= Rω(B)

R∗(A)
?
= R∗(B)

undecidable

undecidable

decidable

(A,B) 7→ (A′,B′)

 R∗(A) ∩ R∗(B) 6= ∅ ⇔ Rω(A′) 6= Rω(B′)

The reduction is based on an idea of Böhm, Göller, Halfon, and Hofman 2017
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The Equivalence Problem — Reduction

R∗(A) ∩ R∗(B) 6= ∅ ⇔ Rω(A′) 6= Rω(B′)

A

qA
0

qA
a

qA
r

. . .

. . .

. . .

B

qB
0

qB
a

qB
r

. . .

. . .

. . .

#/#

#/#

#/#

#/#

ε/ε

ε/ε

ε/ε

ε/ε

u#/v# u#/v#ui#/vi#, ∀i ≥ i0uj#/vj#,∀j ≥ j0
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The Equivalence Problem — Reduction

(u#, v#) ∈ R∗(A) ∩ R∗(B) ⇒ (u#, v#)ω ∈ Rω(A′) \ Rω(B′)
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(u1#, v1#)(u2#, v2#) . . . ∈ Rω(A′) \ Rω(B′) ⇒ ∃k : (uk#, vk#) ∈ R∗(A) ∩ R∗(B)

A

qA
0A′

qA
a

qA
r

. . .

. . .

. . .

B

qB
0B′

qB
a

qB
r

. . .

. . .

. . .

#/#

#/#

#/#

#/#

ε/ε

ε/ε

ε/ε

ε/ε

u#/v# u#/v#ui#/vi#, ∀i ≥ i0uj#/vj#,∀j ≥ j0

Christof Löding, Christopher Spinrath – Decision Problems for Subclasses of Rational Relations 8



The Equivalence Problem — Reduction

(u1#, v1#)(u2#, v2#) . . . ∈ Rω(A′) \ Rω(B′) ⇒ ∃k : (uk#, vk#) ∈ R∗(A) ∩ R∗(B)

A

qA
0A′

qA
a

qA
r

. . .

. . .

. . .

B

qB
0B′

qB
a

qB
r

. . .

. . .

. . .

#/#

#/#

#/#

#/#

ε/ε

ε/ε

ε/ε

ε/ε

u#/v# u#/v#

ui#/vi#, ∀i ≥ i0

uj#/vj#,∀j ≥ j0

Christof Löding, Christopher Spinrath – Decision Problems for Subclasses of Rational Relations 8



The Equivalence Problem — Reduction

(u1#, v1#)(u2#, v2#) . . . ∈ Rω(A′) \ Rω(B′) ⇒ ∃k : (uk#, vk#) ∈ R∗(A) ∩ R∗(B)

A

qA
0A′

qA
a

qA
r

. . .

. . .

. . .

B

qB
0B′

qB
a

qB
r

. . .

. . .

. . .

#/#

#/#

#/#

#/#

ε/ε

ε/ε

ε/ε

ε/ε

u#/v# u#/v#

ui#/vi#, ∀i ≥ i0

uj#/vj#,∀j ≥ j0

Christof Löding, Christopher Spinrath – Decision Problems for Subclasses of Rational Relations 8



The Equivalence Problem — Reduction

(u1#, v1#)(u2#, v2#) . . . ∈ Rω(A′) \ Rω(B′) ⇒ ∃k : (uk#, vk#) ∈ R∗(A) ∩ R∗(B)

A

qA
0A′

qA
a

qA
r

. . .

. . .

. . .

B

qB
0B′

qB
a

qB
r

. . .

. . .

. . .

#/#

#/#

#/#

#/#

ε/ε

ε/ε

ε/ε

ε/ε

u#/v# u#/v#

ui#/vi#, ∀i ≥ i0uj#/vj#,∀j ≥ j0

Christof Löding, Christopher Spinrath – Decision Problems for Subclasses of Rational Relations 8



Outline

The equivalence problem for deterministic transducers

Rω(A)
?
= Rω(B)

undecidable

Deciding recognizability for (ω-)automatic relations

R ?
=

n⋃
i=1

Li × Ki

Christof Löding, Christopher Spinrath – Decision Problems for Subclasses of Rational Relations 9



Outline

The equivalence problem for deterministic transducers

Rω(A)
?
= Rω(B)

undecidable

Deciding recognizability for (ω-)automatic relations

R ?
=

n⋃
i=1

Li × Ki

Christof Löding, Christopher Spinrath – Decision Problems for Subclasses of Rational Relations 9



(ω-)Automatic Relations

• synchronous transducer (single reading head)
• “automaton over a product alphabet”

p0B :

a/a, b/b

R∗(B) = {(u, u) | u ∈ {a, b}∗}

Rω(B) = {(u, u) | u ∈ {a, b}ω}

• finite words may be of different length
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(ω-)Recognizable Relations

R =

n⋃
i=1

Li × Ki

(ω-)regular languages

Example: R = aω × aω ∪ bω × (a + b)ω
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(ω-)Rational Relations – Hierarchy

(ω-)recognizable
relations

(ω-)automatic
relations

deterministic
(ω-)rational

relations
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Deciding Recognizability of (ω-)Automatic Relations

Deciding recognizability for (ω-)automatic relations

R ?
=

n⋃
i=1

Li × Ki

Theorem (Carton, Choffrut, and Grigorieff 2006)
Recognizability for automatic relations is decidable in doubly exponential time.

Theorem (this work)
Recognizability is decidable for

1 ω-automatic relations in doubly exponential time,
2 binary automatic relations in exponential time.
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Summary

The equivalence problem for deterministic transducers

Rω(A)
?
= Rω(B)

undecidable

Deciding recognizability

R ?
=

n⋃
i=1

Li × Ki

R ω-automatic

2EXPTIME

R binary automatic

EXPTIME
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