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Background

Recognizing languages over infinite alphabets

• Example: alphabet of the natural numbers N

• Verification (e.g. counters)
• Database Theory (“data words”)

• Register Automata, Francez, Kaminski
• Pebble Automata, Milo, Neven, Schwentick, Suciu, Vianu
 (non-)equality of input letters

Here: local change rather than (non-)equality of input letters
Example: {0 1 2 · · · n | n ∈ N} ⊂ N∗

Finite Automata Over Infinite Alphabets 2



Background

Recognizing languages over infinite alphabets

• Example: alphabet of the natural numbers N

• Verification (e.g. counters)
• Database Theory (“data words”)

• Register Automata, Francez, Kaminski
• Pebble Automata, Milo, Neven, Schwentick, Suciu, Vianu
 (non-)equality of input letters

Here: local change rather than (non-)equality of input letters
Example: {0 1 2 · · · n | n ∈ N} ⊂ N∗

Finite Automata Over Infinite Alphabets 2



Outline

1 Strong Automata

2 Progressive Grid Automata

3 The Emptiness Problem for Progressive Grid Automata
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Strong Automata – Definition

• Introduced by Spelten, Thomas, Winter
• Idea: “compare” successive letters via logical formulae

Strong Automata are “finite automata”
• the alphabet is N
• the transition format is p, ϕ(x , y), q

Move from p to q via letter n with previous letter m, if
ϕ[m, n] is true

• the model depends on a logic
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Strong Automata – Example

Example

p qx = 0

x + 1 = y

• Recognized language: {0 1 2 · · · n | n ∈ N}
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Strong Automata – Closure Properties

Lemma
Given a strong automaton A, one can construct a deterministic strong
automaton A′ such that L(A) = L(A′).

Proof idea:
• adaption of the classical powerset construction using Boolean
combinations of the given transition formulae

Proposition

The languages recognized by strong automata form an effective Boolean
algebra.
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Strong Automata – The Emptiness Problem

Theorem
The non-emptiness problem for strong automata with transition formulae in
MSO logic over (N,+1) is decidable.

Proof: using Büchi’s decidability result on the MSO-theory of (N,+1)
(description of transitive closure in MSO logic).
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Strong Automata – Extensions

Extensions
1 Connect more than two successive letters
2 Lift the input alphabet to N× N

In both cases:
• Transition formulae have more than two free variables
• The emptiness problem is undecidable for (N,+1) and FO logic

Proof idea:
• Reduce the reachabillity problem for 2-register machines
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Progressive Grid Automata – Grid Words

A word over N is viewed as a grid word:

...
...

...
...

...
...

...
...

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
1 ⊥ ⊥ 1 ⊥ 1 ⊥ 1
1 ⊥ ⊥ 1 1 1 ⊥ 1
1 1 ⊥ 1 1 1 ⊥ 1
1 1 ⊥ 1 1 1 1 1
# # # # # # # #

1 ≤ j ≤ 8

i ∈ N

4 2 0 4 3 4 1 4 7→

• The bottom row is labeled #

• In each column from some point on ⊥
• Remaining positions are labeled with 1
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Progressive Grid Word Automata – Definition

Definition
A Progressive Grid Automaton is a tuple A = (Q, δ, q0,F ) where
• Q is a finite set of states,
• ∆ is the transition relation with

∆ ⊆ Q × {#,⊥, 1} × Q × {↑, ↓,→}

∆ ∩ Q × {#} × Q × {↓} = ∅,

• q0 ∈ Q is the initial state and
• F ⊆ Q is the set of accepting states.
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Progressive Grid Automata – Example

Example

q0 q1 q2 q3
⊥/ ↓

1/ ↑ 1/→,⊥/→,#/→

1/ ↑,#/ ↑ ⊥/→

L := {n0 . . . np ∈ N∗ | p > 0 ∧ n0 = np}
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Progressive Grid Automata – Closure Properties

deterministically non-deterministically
Complement Yes X No
Intersection No No
Union No Yes X

• Complement: method to ensure termination of a computation in a
column

• Intersection: no details here (too technical)

Corollary

Non-determinism is strictly more expressive than determinism.
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Progressive Grid Automata – The Emptiness Problem

Theorem
The emptiness problem for progressive grid automata is decidable.

Proof approach: consider only the vertical position:

...
...

...
⊥ ⊥ ⊥

(p′, 4) 1 (p, 4) ⊥ 1

· · · 1 ⊥ · · · 1
(q, 2) 1 1 (f , 2) 1

1 1 1
# # #

1 ≤ j ≤ n

i ∈ N
Reachabillity
inside a column

Entering a column

Finite Automata Over Infinite Alphabets 15



Progressive Grid Automata – The Emptiness Problem

Theorem
The emptiness problem for progressive grid automata is decidable.

Proof approach: consider only the vertical position:

...
...

...
⊥ ⊥ ⊥

(p′, 4) 1 (p, 4) ⊥ 1

· · · 1 ⊥ · · · 1
(q, 2) 1 1 (f , 2) 1

1 1 1
# # #

1 ≤ j ≤ n

i ∈ N
Reachabillity
inside a column

Entering a column

Finite Automata Over Infinite Alphabets 15



Progressive Grid Automata – The Emptiness Problem

Entering a column
• Initially, any column can be entered in configuration (q0, 1).

• If there is a column that can be entered in (q, k),

• some (p′, `) can be reached inside this column
• and there is a suitable horizontal transition to p
• then any column may be entered in (p, `).

 least fixed point definable in MSO logic over Q × (N,+1)
 again, apply Büchi’s decidability result (also true here)

Reachabillity inside a column
• Can be defined analogously (by a least fixed point)
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Comparison – Languages over N

{n0 . . . np | n0 = np}
{n0n1 | n1 = 2n0}

FO (N,+)

Progressive Grid Automata Strong Automata

{0 1 2 · · · n}
MSO (N,+1)
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Conclusion

Summary
Two models with transitions for local change:
• Strong Automata
• Progressive Grid Automata
• The Emptiness Problem is decidable
• Different expressive power

Further Prospects
• Extension to other infinite alphabets like Σ∗ rather than N
• Extension to infinite words
• General framework of progressive grid automata
• Complexity of the decision problems
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