
Finite Automata Over Infinite Alphabets:
Two Models with Transitions for Local Change

Christopher Czyba Christopher Spinrath Wolfgang Thomas

RWTH Aachen University

DLT 2015

Finite Automata Over Infinite Alphabets 1

Background

Recognizing languages over infinite alphabets

• Example: alphabet of the natural numbers N

• Verification (e.g. counters)
• Database Theory (“data words”)

• Register Automata, Francez, Kaminski
• Pebble Automata, Milo, Neven, Schwentick, Suciu, Vianu
 (non-)equality of input letters

Here: local change rather than (non-)equality of input letters
Example: {0 1 2 · · · n | n ∈ N} ⊂ N∗

Finite Automata Over Infinite Alphabets 2

Background

Recognizing languages over infinite alphabets

• Example: alphabet of the natural numbers N

• Verification (e.g. counters)
• Database Theory (“data words”)

• Register Automata, Francez, Kaminski
• Pebble Automata, Milo, Neven, Schwentick, Suciu, Vianu
 (non-)equality of input letters

Here: local change rather than (non-)equality of input letters
Example: {0 1 2 · · · n | n ∈ N} ⊂ N∗

Finite Automata Over Infinite Alphabets 2

Outline

1 Strong Automata

2 Progressive Grid Automata

3 The Emptiness Problem for Progressive Grid Automata

4 Comparison

5 Conclusion

Finite Automata Over Infinite Alphabets 3

Strong Automata – Definition

• Introduced by Spelten, Thomas, Winter
• Idea: “compare” successive letters via logical formulae

Strong Automata are “finite automata”
• the alphabet is N
• the transition format is p, ϕ(x , y), q

Move from p to q via letter n with previous letter m, if
ϕ[m, n] is true

• the model depends on a logic

Finite Automata Over Infinite Alphabets 4

Strong Automata – Definition

• Introduced by Spelten, Thomas, Winter
• Idea: “compare” successive letters via logical formulae

Strong Automata are “finite automata”
• the alphabet is N
• the transition format is p, ϕ(x , y), q

Move from p to q via letter n with previous letter m, if
ϕ[m, n] is true

• the model depends on a logic

Finite Automata Over Infinite Alphabets 4

Strong Automata – Example

Example

p qx = 0

x + 1 = y

• Recognized language: {0 1 2 · · · n | n ∈ N}

Finite Automata Over Infinite Alphabets 5

Strong Automata – Closure Properties

Lemma
Given a strong automaton A, one can construct a deterministic strong
automaton A′ such that L(A) = L(A′).

Proof idea:
• adaption of the classical powerset construction using Boolean
combinations of the given transition formulae

Proposition

The languages recognized by strong automata form an effective Boolean
algebra.

Finite Automata Over Infinite Alphabets 6

Strong Automata – Closure Properties

Lemma
Given a strong automaton A, one can construct a deterministic strong
automaton A′ such that L(A) = L(A′).

Proof idea:
• adaption of the classical powerset construction using Boolean
combinations of the given transition formulae

Proposition

The languages recognized by strong automata form an effective Boolean
algebra.

Finite Automata Over Infinite Alphabets 6

Strong Automata – The Emptiness Problem

Theorem
The non-emptiness problem for strong automata with transition formulae in
MSO logic over (N,+1) is decidable.

Proof: using Büchi’s decidability result on the MSO-theory of (N,+1)
(description of transitive closure in MSO logic).

Finite Automata Over Infinite Alphabets 7

Strong Automata – Extensions

Extensions
1 Connect more than two successive letters
2 Lift the input alphabet to N× N

In both cases:
• Transition formulae have more than two free variables
• The emptiness problem is undecidable for (N,+1) and FO logic

Proof idea:
• Reduce the reachabillity problem for 2-register machines

Finite Automata Over Infinite Alphabets 8

Strong Automata – Extensions

Extensions
1 Connect more than two successive letters
2 Lift the input alphabet to N× N

In both cases:
• Transition formulae have more than two free variables
• The emptiness problem is undecidable for (N,+1) and FO logic

Proof idea:
• Reduce the reachabillity problem for 2-register machines

Finite Automata Over Infinite Alphabets 8

Outline

1 Strong Automata

2 Progressive Grid Automata

3 The Emptiness Problem for Progressive Grid Automata

4 Comparison

5 Conclusion

Finite Automata Over Infinite Alphabets 9

Progressive Grid Automata – Grid Words

A word over N is viewed as a grid word:

...
...

...
...

...
...

...
...

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
1 ⊥ ⊥ 1 ⊥ 1 ⊥ 1
1 ⊥ ⊥ 1 1 1 ⊥ 1
1 1 ⊥ 1 1 1 ⊥ 1
1 1 ⊥ 1 1 1 1 1
#

1 ≤ j ≤ 8

i ∈ N

4 2 0 4 3 4 1 4 7→

• The bottom row is labeled #

• In each column from some point on ⊥
• Remaining positions are labeled with 1

Finite Automata Over Infinite Alphabets 10

Progressive Grid Automata – Grid Words

A word over N is viewed as a grid word:

...
...

...
...

...
...

...
...

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
1 ⊥ ⊥ 1 ⊥ 1 ⊥ 1
1 ⊥ ⊥ 1 1 1 ⊥ 1
1 1 ⊥ 1 1 1 ⊥ 1
1 1 ⊥ 1 1 1 1 1
#

1 ≤ j ≤ 8

i ∈ N

4 2 0 4 3 4 1 4 7→

• The bottom row is labeled #

• In each column from some point on ⊥
• Remaining positions are labeled with 1

Finite Automata Over Infinite Alphabets 10

Progressive Grid Word Automata – Definition

Definition
A Progressive Grid Automaton is a tuple A = (Q, δ, q0,F) where
• Q is a finite set of states,
• ∆ is the transition relation with

∆ ⊆ Q × {#,⊥, 1} × Q × {↑, ↓,→}

∆ ∩ Q × {#} × Q × {↓} = ∅,

• q0 ∈ Q is the initial state and
• F ⊆ Q is the set of accepting states.

Finite Automata Over Infinite Alphabets 11

Progressive Grid Word Automata – Definition

Definition
A Progressive Grid Automaton is a tuple A = (Q, δ, q0,F) where
• Q is a finite set of states,
• ∆ is the transition relation with

∆ ⊆ Q × {#,⊥, 1} × Q × {↑, ↓,→}

∆ ∩ Q × {#} × Q × {↓} = ∅,

• q0 ∈ Q is the initial state and
• F ⊆ Q is the set of accepting states.

Finite Automata Over Infinite Alphabets 11

Progressive Grid Automata – Example

Example

q0 q1 q2 q3
⊥/ ↓

1/ ↑ 1/→,⊥/→,#/→

1/ ↑,#/ ↑ ⊥/→

L := {n0 . . . np ∈ N∗ | p > 0 ∧ n0 = np}

Finite Automata Over Infinite Alphabets 12

Progressive Grid Automata – Closure Properties

deterministically non-deterministically
Complement Yes X No
Intersection No No
Union No Yes X

• Complement: method to ensure termination of a computation in a
column

• Intersection: no details here (too technical)

Corollary

Non-determinism is strictly more expressive than determinism.

Finite Automata Over Infinite Alphabets 13

Progressive Grid Automata – Closure Properties

deterministically non-deterministically
Complement Yes X No
Intersection No No
Union No Yes X

• Complement: method to ensure termination of a computation in a
column

• Intersection: no details here (too technical)

Corollary

Non-determinism is strictly more expressive than determinism.

Finite Automata Over Infinite Alphabets 13

Outline

1 Strong Automata

2 Progressive Grid Automata

3 The Emptiness Problem for Progressive Grid Automata

4 Comparison

5 Conclusion

Finite Automata Over Infinite Alphabets 14

Progressive Grid Automata – The Emptiness Problem

Theorem
The emptiness problem for progressive grid automata is decidable.

Proof approach: consider only the vertical position:

...
...

...
⊥ ⊥ ⊥

(p′, 4) 1 (p, 4) ⊥ 1

· · · 1 ⊥ · · · 1
(q, 2) 1 1 (f , 2) 1

1 1 1
#

1 ≤ j ≤ n

i ∈ N
Reachabillity
inside a column

Entering a column

Finite Automata Over Infinite Alphabets 15

Progressive Grid Automata – The Emptiness Problem

Theorem
The emptiness problem for progressive grid automata is decidable.

Proof approach: consider only the vertical position:

...
...

...
⊥ ⊥ ⊥

(p′, 4) 1 (p, 4) ⊥ 1

· · · 1 ⊥ · · · 1
(q, 2) 1 1 (f , 2) 1

1 1 1
#

1 ≤ j ≤ n

i ∈ N
Reachabillity
inside a column

Entering a column

Finite Automata Over Infinite Alphabets 15

Progressive Grid Automata – The Emptiness Problem

Entering a column
• Initially, any column can be entered in configuration (q0, 1).

• If there is a column that can be entered in (q, k),

• some (p′, `) can be reached inside this column
• and there is a suitable horizontal transition to p
• then any column may be entered in (p, `).

 least fixed point definable in MSO logic over Q × (N,+1)
 again, apply Büchi’s decidability result (also true here)

Reachabillity inside a column
• Can be defined analogously (by a least fixed point)

Finite Automata Over Infinite Alphabets 16

Progressive Grid Automata – The Emptiness Problem

Entering a column
• Initially, any column can be entered in configuration (q0, 1).
• If there is a column that can be entered in (q, k),

• some (p′, `) can be reached inside this column
• and there is a suitable horizontal transition to p
• then any column may be entered in (p, `).

 least fixed point definable in MSO logic over Q × (N,+1)
 again, apply Büchi’s decidability result (also true here)

Reachabillity inside a column
• Can be defined analogously (by a least fixed point)

Finite Automata Over Infinite Alphabets 16

Progressive Grid Automata – The Emptiness Problem

Entering a column
• Initially, any column can be entered in configuration (q0, 1).
• If there is a column that can be entered in (q, k),

• some (p′, `) can be reached inside this column
• and there is a suitable horizontal transition to p
• then any column may be entered in (p, `).

 least fixed point definable in MSO logic over Q × (N,+1)
 again, apply Büchi’s decidability result (also true here)

Reachabillity inside a column
• Can be defined analogously (by a least fixed point)

Finite Automata Over Infinite Alphabets 16

Progressive Grid Automata – The Emptiness Problem

Entering a column
• Initially, any column can be entered in configuration (q0, 1).
• If there is a column that can be entered in (q, k),

• some (p′, `) can be reached inside this column
• and there is a suitable horizontal transition to p
• then any column may be entered in (p, `).

 least fixed point definable in MSO logic over Q × (N,+1)
 again, apply Büchi’s decidability result (also true here)

Reachabillity inside a column
• Can be defined analogously (by a least fixed point)

Finite Automata Over Infinite Alphabets 16

Outline

1 Strong Automata

2 Progressive Grid Automata

3 The Emptiness Problem for Progressive Grid Automata

4 Comparison

5 Conclusion

Finite Automata Over Infinite Alphabets 17

Comparison – Languages over N

{n0 . . . np | n0 = np}
{n0n1 | n1 = 2n0}

FO (N,+)

Progressive Grid Automata Strong Automata

{0 1 2 · · · n}
MSO (N,+1)

Finite Automata Over Infinite Alphabets 18

Comparison – Languages over N

{n0 . . . np | n0 = np}
{n0n1 | n1 = 2n0}

FO (N,+)

Progressive Grid Automata Strong Automata

{0 1 2 · · · n}
MSO (N,+1)

Finite Automata Over Infinite Alphabets 18

Conclusion

Summary
Two models with transitions for local change:
• Strong Automata
• Progressive Grid Automata
• The Emptiness Problem is decidable
• Different expressive power

Further Prospects
• Extension to other infinite alphabets like Σ∗ rather than N
• Extension to infinite words
• General framework of progressive grid automata
• Complexity of the decision problems

Finite Automata Over Infinite Alphabets 19

	Strong Automata
	Progressive Grid Automata
	The Emptiness Problem for Progressive Grid Automata
	Comparison
	Conclusion

