

Finite Automata Over Infinite Alphabets: Two Models with Transitions for Local Change

Christopher Czyba

Christopher Spinrath

Wolfgang Thomas

RWTH Aachen University

DLT 2015

Background

Recognizing languages over infinite alphabets

- Example: alphabet of the **natural numbers** \mathbb{N}
- Verification (e.g. counters)
- Database Theory (“data words”)
- Register Automata, *Francez, Kaminski*
- Pebble Automata, *Milo, Neven, Schwentick, Suciu, Vianu*
 - ~~> (non-)equality of input letters

Background

Recognizing languages over infinite alphabets

- Example: alphabet of the **natural numbers** \mathbb{N}
- Verification (e.g. counters)
- Database Theory (“data words”)
- Register Automata, *Francez, Kaminski*
- Pebble Automata, *Milo, Neven, Schwentick, Suciu, Vianu*
 - ~~> (non-)equality of input letters

Here: **local change** rather than (non-)equality of input letters

Example: $\{0\ 1\ 2\ \dots\ n \mid n \in \mathbb{N}\} \subset \mathbb{N}^*$

Outline

- 1 Strong Automata
- 2 Progressive Grid Automata
- 3 The Emptiness Problem for Progressive Grid Automata
- 4 Comparison
- 5 Conclusion

Strong Automata – Definition

- Introduced by Spelten, Thomas, Winter
- Idea: “compare” **successive** letters via **logical formulae**

Strong Automata – Definition

- Introduced by Spelten, Thomas, Winter
- Idea: “compare” successive letters via logical formulae

Strong Automata are “finite automata”

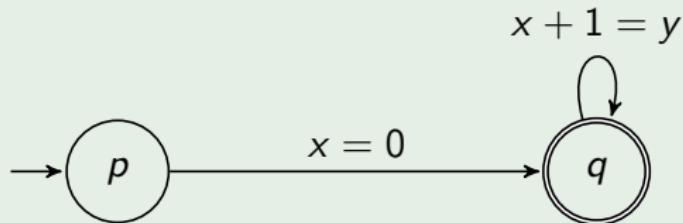
- the alphabet is \mathbb{N}
- the transition format is $p, \varphi(x, y), q$

Move from p to q via letter n with previous letter m , if
 $\varphi[m, n]$ is true

- the model depends on a logic

Strong Automata – Example

Example



- Recognized language: $\{0 \ 1 \ 2 \ \cdots \ n \mid n \in \mathbb{N}\}$

Strong Automata – Closure Properties

Lemma

Given a strong automaton \mathfrak{A} , one can construct a deterministic strong automaton \mathfrak{A}' such that $L(\mathfrak{A}) = L(\mathfrak{A}')$.

Proof idea:

- adaption of the classical powerset construction using Boolean combinations of the given transition formulae

Strong Automata – Closure Properties

Lemma

Given a strong automaton \mathfrak{A} , one can construct a deterministic strong automaton \mathfrak{A}' such that $L(\mathfrak{A}) = L(\mathfrak{A}')$.

Proof idea:

- adaption of the classical powerset construction using Boolean combinations of the given transition formulae

Proposition

The languages recognized by strong automata form an effective Boolean algebra.

Strong Automata – The Emptiness Problem

Theorem

The non-emptiness problem for strong automata with transition formulae in MSO logic over $(\mathbb{N}, +1)$ is decidable.

Proof: using Büchi's decidability result on the MSO-theory of $(\mathbb{N}, +1)$ (description of transitive closure in MSO logic).

Strong Automata – Extensions

Extensions

- ① Connect more than two successive letters
- ② Lift the input alphabet to $\mathbb{N} \times \mathbb{N}$

Strong Automata – Extensions

Extensions

- ① Connect more than two successive letters
- ② Lift the input alphabet to $\mathbb{N} \times \mathbb{N}$

In both cases:

- Transition formulae have more than two free variables
- The emptiness problem is undecidable for $(\mathbb{N}, +1)$ and FO logic

Proof idea:

- Reduce the reachability problem for 2-register machines

Outline

- 1 Strong Automata
- 2 Progressive Grid Automata
- 3 The Emptiness Problem for Progressive Grid Automata
- 4 Comparison
- 5 Conclusion

Progressive Grid Automata – Grid Words

A word over \mathbb{N} is viewed as a [grid word](#):

4 2 0 4 3 4 1 4 \mapsto

$i \in \mathbb{N}$	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮
	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮
	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮	⋮
	1	⋮	⋮	1	⋮	1	⋮	1	
	1	⋮	⋮	1	1	1	⋮	1	
	1	1	⋮	1	1	1	⋮	1	
	1	1	⋮	1	1	1	1	1	
	#	#	#	#	#	#	#	#	

| $1 \leq j \leq 8$

Progressive Grid Automata – Grid Words

A word over \mathbb{N} is viewed as a [grid word](#):

$i \in \mathbb{N}$								
	:	:	:	:	:	:	:	:
	\perp	\perp	\perp	\perp	\perp	\perp	\perp	\perp
4	2	0	4	3	4	1	4	\mapsto
	1	\perp	\perp	1	\perp	1	\perp	1
	1	\perp	\perp	1	1	1	\perp	1
	1	1	\perp	1	1	1	\perp	1
	1	1	\perp	1	1	1	1	1
	#	#	#	#	#	#	#	#
	$ 1 \leq j \leq 8$							

- The [bottom row](#) is labeled $\#$
- In each column from some point on \perp
- Remaining positions are labeled with 1

Progressive Grid Word Automata – Definition

Definition

A **Progressive Grid Automaton** is a tuple $\mathcal{A} = (Q, \delta, q_0, F)$ where

- Q is a finite set of states,
- Δ is the **transition relation** with

$$\Delta \subseteq Q \times \{\#, \perp, 1\} \times Q \times \{\uparrow, \downarrow, \rightarrow\}$$

- $q_0 \in Q$ is the initial state and
- $F \subseteq Q$ is the set of accepting states.

Progressive Grid Word Automata – Definition

Definition

A **Progressive Grid Automaton** is a tuple $\mathcal{A} = (Q, \delta, q_0, F)$ where

- Q is a finite set of states,
- Δ is the **transition relation** with

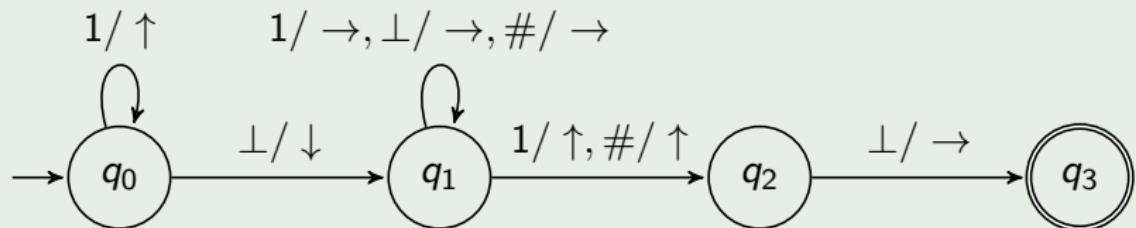
$$\Delta \subseteq Q \times \{\#, \perp, 1\} \times Q \times \{\uparrow, \downarrow, \rightarrow\}$$

$$\Delta \cap Q \times \{\#\} \times Q \times \{\downarrow\} = \emptyset,$$

- $q_0 \in Q$ is the initial state and
- $F \subseteq Q$ is the set of accepting states.

Progressive Grid Automata – Example

Example



$$L := \{n_0 \dots n_p \in \mathbb{N}^* \mid p > 0 \wedge n_0 = n_p\}$$

Progressive Grid Automata – Closure Properties

	deterministically	non-deterministically
Complement	Yes ✓	No
Intersection	No	No
Union	No	Yes ✓

- **Complement:** method to ensure **termination** of a computation in a column
- **Intersection:** no details here (too technical)

Progressive Grid Automata – Closure Properties

	deterministically	non-deterministically
Complement	Yes ✓	No
Intersection	No	No
Union	No	Yes ✓

- **Complement:** method to ensure **termination** of a computation in a column
- **Intersection:** no details here (too technical)

Corollary

*Non-determinism is **strictly more expressive than determinism**.*

Outline

- 1 Strong Automata
- 2 Progressive Grid Automata
- 3 The Emptiness Problem for Progressive Grid Automata
- 4 Comparison
- 5 Conclusion

Progressive Grid Automata – The Emptiness Problem

Theorem

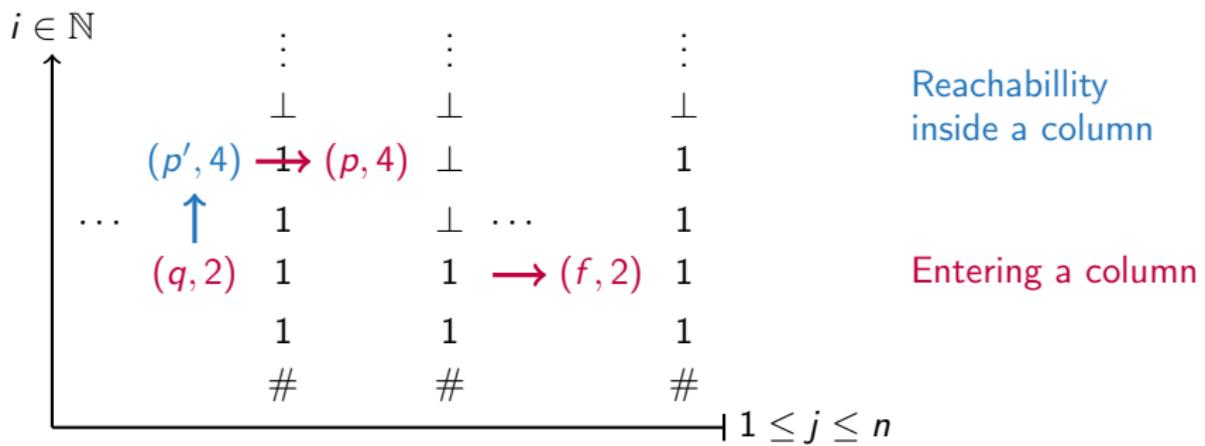
The emptiness problem for progressive grid automata is decidable.

Progressive Grid Automata – The Emptiness Problem

Theorem

The emptiness problem for progressive grid automata is decidable.

Proof approach: consider only the vertical position:



Progressive Grid Automata – The Emptiness Problem

Entering a column

- **Initially**, any column can be entered in configuration $(q_0, 1)$.

Progressive Grid Automata – The Emptiness Problem

Entering a column

- **Initially**, any column can be entered in configuration $(q_0, 1)$.
- If there is a column that can be entered in (q, k) ,
 - **some** (p', ℓ) **can be reached inside this column**
 - and there is a suitable horizontal transition to p
 - then any column may be entered in (p, ℓ) .

Progressive Grid Automata – The Emptiness Problem

Entering a column

- **Initially**, any column can be entered in configuration $(q_0, 1)$.
- If there is a column that can be entered in (q, k) ,
 - some (p', ℓ) can be reached inside this column
 - and there is a suitable horizontal transition to p
 - then any column may be entered in (p, ℓ) .

~ least fixed point definable in MSO logic over $Q \times (\mathbb{N}, +1)$

~ again, apply Büchi's decidability result (also true here)

Progressive Grid Automata – The Emptiness Problem

Entering a column

- **Initially**, any column can be entered in configuration $(q_0, 1)$.
- If there is a column that can be entered in (q, k) ,
 - **some** (p', ℓ) can be reached inside this column
 - and there is a suitable horizontal transition to p
 - then any column may be entered in (p, ℓ) .

~ least fixed point definable in MSO logic over $Q \times (\mathbb{N}, +1)$

~ again, apply Büchi's decidability result (also true here)

Reachability inside a column

- Can be defined analogously (by a least fixed point)

Outline

- 1 Strong Automata
- 2 Progressive Grid Automata
- 3 The Emptiness Problem for Progressive Grid Automata
- 4 Comparison
- 5 Conclusion

Comparison – Languages over \mathbb{N}

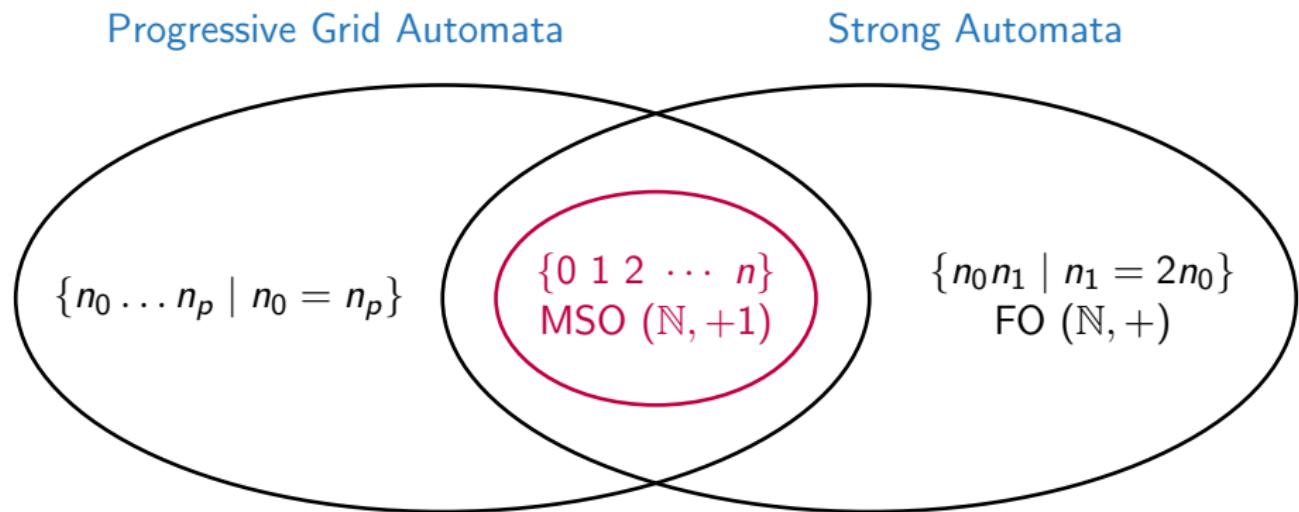
Progressive Grid Automata

$$\{n_0 \dots n_p \mid n_0 = n_p\}$$

Strong Automata

$$\begin{aligned} & \{n_0 n_1 \mid n_1 = 2n_0\} \\ & \text{FO } (\mathbb{N}, +) \end{aligned}$$

Comparison – Languages over \mathbb{N}



Conclusion

Summary

Two models with transitions for local change:

- Strong Automata
- Progressive Grid Automata
- The Emptiness Problem is decidable
- Different expressive power

Further Prospects

- Extension to other infinite alphabets like Σ^* rather than \mathbb{N}
- Extension to infinite words
- General framework of progressive grid automata
- Complexity of the decision problems