
Parallel-Correctness and Parallel-Boundedness for Datalog Programs

Frank Neven1 Thomas Schwentick2 Christopher Spinrath2 Brecht Vandevoort1

1Hasselt University and transnational University of Limburg

2TU Dortmund University

22nd ICDT March 28, 2019 Lisbon

This work is licensed under the
Creative Commons Attribution-ShareAlike 4.0 International license

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 1

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

Distributed Evaluation

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

Distributed Evaluation

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

Distributed Evaluation

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

Distributed Evaluation

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

Distributed Evaluation

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

Distributed Evaluation

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

Distributed Evaluation

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

Distributed Evaluation

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

The Parallel-Correctness Problem

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

The Parallel-Correctness Problem

Query

• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).

• recursive evaluation
(fixed point computation)

glo
ba

l e
va

lua
tio

n

. . .

. . .
.global

database

. . .local
evaluation

. . .local
evaluation

......

. . .result

Server 2Server 1 Server n

. . .

. . .
.

. . .

∪ ∪ ∪
?
=

initial distribution

communication

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 2

The Parallel-Correctness Problem

Parallel-Correctness Problem
Input:
• Datalog program
• distribution policy
• communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?

Theorem (Ketsman, Albarghouthi, and Koutris 2018)
Parallel-correctness for general Datalog programs is
undecidable.

• Even for “simple” policies:
• only two servers
• all but one relations are distributed to both

servers
• no communication

• Is there a fragment of Datalog for which
parallel-correctness is decidable?

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 3

The Parallel-Correctness Problem

Parallel-Correctness Problem
Input:
• Datalog program
• distribution policy
• communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?

Theorem (Ketsman, Albarghouthi, and Koutris 2018)
Parallel-correctness for general Datalog programs is
undecidable.

• Even for “simple” policies:
• only two servers
• all but one relations are distributed to both

servers
• no communication

• Is there a fragment of Datalog for which
parallel-correctness is decidable?

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 3

The Parallel-Correctness Problem

Parallel-Correctness Problem
Input:
• Datalog program
• distribution policy
• communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?

Theorem (Ketsman, Albarghouthi, and Koutris 2018)
Parallel-correctness for general Datalog programs is
undecidable.

• Even for “simple” policies:
• only two servers
• all but one relations are distributed to both

servers
• no communication

• Is there a fragment of Datalog for which
parallel-correctness is decidable?

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 3

The Parallel-Correctness Problem

Parallel-Correctness Problem
Input:
• Datalog program
• distribution policy
• communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?

Theorem (Ketsman, Albarghouthi, and Koutris 2018)
Parallel-correctness for general Datalog programs is
undecidable.

• Even for “simple” policies:
• only two servers
• all but one relations are distributed to both

servers
• no communication

• Is there a fragment of Datalog for which
parallel-correctness is decidable?

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 3

Basics

Relational databases

E(a, b, c)︸ ︷︷ ︸
fact

,E(a, d , g),F (a, d), . . .

with extensional relation symbols
E ,F , . . .

Datalog programs consist of rules

T (x , y)︸ ︷︷ ︸
head

← E(x , y , z),
atom︷ ︸︸ ︷

R(x , v)︸ ︷︷ ︸
body

.

head atoms are intensional
(i.e. not extensional)

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 4

Basics

Relational databases

E(a, b, c)︸ ︷︷ ︸
fact

,E(a, d , g),F (a, d), . . .

with extensional relation symbols
E ,F , . . .

Datalog programs consist of rules

T (x , y)︸ ︷︷ ︸
head

← E(x , y , z),
atom︷ ︸︸ ︷

R(x , v)︸ ︷︷ ︸
body

.

head atoms are intensional
(i.e. not extensional)

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 4

Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
… and containment is undecidable for general Datalog

general Datalog

frontier-guarded
Datalog

Each rule has a guard atom
• contains all head variables
• extensional

Example:
T (x , y)← E(x, y, z),F (y , v).

monadic
Datalog

only unary
head atoms

Example:
R(x)← S(x),E(y , z, u).

)

(

rewrite

Containment is decidable for monadic Datalog

and frontier-guarded Datalog

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 5

Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
… and containment is undecidable for general Datalog

general Datalog

frontier-guarded
Datalog

Each rule has a guard atom
• contains all head variables
• extensional

Example:
T (x , y)← E(x, y, z),F (y , v).

monadic
Datalog

only unary
head atoms

Example:
R(x)← S(x),E(y , z, u).

)

(

rewrite

Containment is decidable for monadic Datalog

and frontier-guarded Datalog

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 5

Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
… and containment is undecidable for general Datalog

general Datalog

frontier-guarded
Datalog

Each rule has a guard atom
• contains all head variables
• extensional

Example:
T (x , y)← E(x, y, z),F (y , v).

monadic
Datalog

only unary
head atoms

Example:
R(x)← S(x),E(y , z, u).

)

(

rewrite

Containment is decidable for monadic Datalog and frontier-guarded Datalog

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 5

Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
… and containment is undecidable for general Datalog

general Datalog

frontier-guarded
Datalog

Each rule has a guard atom
• contains all head variables
• extensional

Example:
T (x , y)← E(x, y, z),F (y , v).

monadic
Datalog

only unary
head atoms

Example:
R(x)← S(x),E(y , z, u).

)

(

rewrite

Containment is decidable for monadic Datalog and frontier-guarded Datalog

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 5

Distribution Policies
Idea: Use hash functions h1, . . . , hk fast, evenly distribution

E(a, d , g)
E(a, b, c)

F (a, d)
E(a, e, g)

E(a, b, c)
F (a, d)

E(a, d , g)
E(a, e, g)

Server 1

Server 2

h5(c, a) = 1

h5(g , a) = 2

h1(a, d
, d) = 1

h5(g , a) = 2

Here: Hash policy schemes
• describes how hash functions are applied
• defines class of hash functions

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 6

Distribution Policies
Idea: Use hash functions h1, . . . , hk fast, evenly distribution

E(a, d , g)
E(a, b, c)

F (a, d)
E(a, e, g)

E(a, b, c)
F (a, d)

E(a, d , g)
E(a, e, g)

Server 1

Server 2

h5(c, a) = 1

h5(g , a) = 2

h1(a, d
, d) = 1

h5(g , a) = 2

Here: Hash policy schemes
• describes how hash functions are applied
• defines class of hash functions

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 6

Distribution Policies
Idea: Use hash functions h1, . . . , hk fast, evenly distribution

E(a, d , g)
E(a, b, c)

F (a, d)
E(a, e, g)

E(a, b, c)
F (a, d)

E(a, d , g)
E(a, e, g)

Server 1

Server 2

h5(c, a) = 1

h5(g , a) = 2

h1(a, d
, d) = 1

h5(g , a) = 2

Here: Hash policy schemes
• describes how hash functions are applied
• defines class of hash functions

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 6

Distribution Policies
Idea: Use hash functions h1, . . . , hk fast, evenly distribution

E(a, d , g)
E(a, b, c)

F (a, d)
E(a, e, g)

E(a, b, c)
F (a, d)

E(a, d , g)
E(a, e, g)

Server 1

Server 2

h5(c, a) = 1

h5(g , a) = 2

h1(a, d
, d) = 1

h5(g , a) = 2

Here: Hash policy schemes
• describes how hash functions are applied
• defines class of hash functions

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 6

Distribution Policies
Idea: Use hash functions h1, . . . , hk fast, evenly distribution

E(a, d , g)
E(a, b, c)

F (a, d)
E(a, e, g)

E(a, b, c)
F (a, d)

E(a, d , g)
E(a, e, g)

Server 1

Server 2

h5(c, a) = 1

h5(g , a) = 2

h1(a, d
, d) = 1

h5(g , a) = 2

Here: Hash policy schemes
• describes how hash functions are applied
• defines class of hash functions

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 6

Distribution Policies
Idea: Use hash functions h1, . . . , hk fast, evenly distribution

E(a, d , g)
E(a, b, c)

F (a, d)
E(a, e, g)

E(a, b, c)
F (a, d)

E(a, d , g)
E(a, e, g)

Server 1

Server 2

h5(c, a) = 1

h5(g , a) = 2

h1(a, d
, d) = 1

h5(g , a) = 2

Here: Hash policy schemes
• describes how hash functions are applied
• defines class of hash functions

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 6

Communication Policies

Data-Moving Distribution Constraints

R(x , y)@λ,S(y)@κ︸ ︷︷ ︸
body

→ R(x , y)@κ︸ ︷︷ ︸
head

Both R(x , y) and κ occur in the body.
• No creation of facts
• No creation of servers

R(a, b)
S(b)

R(a, b)
Server 1 Server 2

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 7

Communication Policies

Data-Moving Distribution Constraints

R(x , y)@λ,S(y)@κ︸ ︷︷ ︸
body

→ R(x , y)@κ︸ ︷︷ ︸
head

Both R(x , y) and κ occur in the body.
• No creation of facts
• No creation of servers

R(a, b)
S(b)

R(a, b)
Server 1 Server 2

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 7

Communication Policies

Data-Moving Distribution Constraints

R(x , y)@λ,S(y)@κ︸ ︷︷ ︸
body

→ R(x , y)@κ︸ ︷︷ ︸
head

Both R(x , y) and κ occur in the body.
• No creation of facts
• No creation of servers

R(a, b)
S(b)

R(a, b)
Server 1 Server 2

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 7

Parallel-Correctness

Theorem
Parallel-correctness for monadic and frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 8

A Decidable Variant

Theorem
Parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints
• with the polynomial communication property

is 2ExpTime-complete.

Lower bound: reduction from the containment problem

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 9

A Decidable Variant

Theorem
Parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints
• with the polynomial communication property

is 2ExpTime-complete.

Lower bound: reduction from the containment problem

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 9

Distributed Proof Trees

R(a, d , e)@2

E(a, d , e)@2 S(a, e)@2

S(a, e)@1

F (e)@1 S(a, e)@3

G(a, e)@3

R(f , g , h)@3

E(f , g , h)@3 S(f , h)@3

…

S(f , g)@3

…

F (e)@2

S(a, d)@2

E(a, d , e)@2 S(a, d)@3

F (g)@3 E(a, d , g)@3

local computation
(rule application)

communication
(constraint application)

computation-free
subtree

The size of computation-free subtrees is
polynomially bounded.

Two Settings
1 Syntactical restriction of

distribution constraints
2 Changed semantics

non-transitive setting

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 10

Distributed Proof Trees

R(a, d , e)@2

E(a, d , e)@2 S(a, e)@2

S(a, e)@1

F (e)@1 S(a, e)@3

G(a, e)@3

R(f , g , h)@3

E(f , g , h)@3 S(f , h)@3

…

S(f , g)@3

…

F (e)@2

S(a, d)@2

E(a, d , e)@2 S(a, d)@3

F (g)@3 E(a, d , g)@3

local computation
(rule application)

communication
(constraint application)

computation-free
subtree

The size of computation-free subtrees is
polynomially bounded.

Two Settings
1 Syntactical restriction of

distribution constraints
2 Changed semantics

non-transitive setting

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 10

Distributed Proof Trees

R(a, d , e)@2

E(a, d , e)@2 S(a, e)@2

S(a, e)@1

F (e)@1 S(a, e)@3

G(a, e)@3

R(f , g , h)@3

E(f , g , h)@3 S(f , h)@3

…

S(f , g)@3

…

F (e)@2

S(a, d)@2

E(a, d , e)@2 S(a, d)@3

F (g)@3 E(a, d , g)@3

local computation
(rule application)

communication
(constraint application)

computation-free
subtree

The size of computation-free subtrees is
polynomially bounded.

Two Settings
1 Syntactical restriction of

distribution constraints
2 Changed semantics

non-transitive setting

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 10

Distributed Proof Trees

R(a, d , e)@2

E(a, d , e)@2 S(a, e)@2

S(a, e)@1

F (e)@1 S(a, e)@3

G(a, e)@3

R(f , g , h)@3

E(f , g , h)@3 S(f , h)@3

…

S(f , g)@3

…

F (e)@2

S(a, d)@2

E(a, d , e)@2 S(a, d)@3

F (g)@3 E(a, d , g)@3

local computation
(rule application)

communication
(constraint application)

computation-free
subtree

The size of computation-free subtrees is
polynomially bounded.

Two Settings
1 Syntactical restriction of

distribution constraints
2 Changed semantics

non-transitive setting

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 10

Distributed Proof Trees

R(a, d , e)@2

E(a, d , e)@2 S(a, e)@2

S(a, e)@1

F (e)@1 S(a, e)@3

G(a, e)@3

R(f , g , h)@3

E(f , g , h)@3 S(f , h)@3

…

S(f , g)@3

…

F (e)@2

S(a, d)@2

E(a, d , e)@2 S(a, d)@3

F (g)@3 E(a, d , g)@3

local computation
(rule application)

communication
(constraint application)

computation-free
subtree

The size of computation-free subtrees is
polynomially bounded.

Two Settings
1 Syntactical restriction of

distribution constraints
2 Changed semantics

non-transitive setting

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 10

Distributed Proof Trees Polynomial Communication Property

R(a, d , e)@2

E(a, d , e)@2 S(a, e)@2

S(a, e)@1

F (e)@1 S(a, e)@3

G(a, e)@3

R(f , g , h)@3

E(f , g , h)@3 S(f , h)@3

…

S(f , g)@3

…

F (e)@2

S(a, d)@2

E(a, d , e)@2 S(a, d)@3

F (g)@3 E(a, d , g)@3

local computation
(rule application)

communication
(constraint application)

computation-free
subtree

The size of computation-free subtrees is
polynomially bounded.

Two Settings
1 Syntactical restriction of

distribution constraints
2 Changed semantics

non-transitive setting

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 10

Distributed Proof Trees Polynomial Communication Property

R(a, d , e)@2

E(a, d , e)@2 S(a, e)@2

S(a, e)@1

F (e)@1 S(a, e)@3

G(a, e)@3

R(f , g , h)@3

E(f , g , h)@3 S(f , h)@3

…

S(f , g)@3

…

F (e)@2

S(a, d)@2

E(a, d , e)@2 S(a, d)@3

F (g)@3 E(a, d , g)@3

local computation
(rule application)

communication
(constraint application)

computation-free
subtree

The size of computation-free subtrees is
polynomially bounded.

Two Settings
1 Syntactical restriction of

distribution constraints
2 Changed semantics

non-transitive setting

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 10

Proof Approach: Parallel-Correctness is in 2ExpTime

1 Consider only worst-case hash functions

2 Compile
• distribution policy,
• communication policy, and
• input Datalog program

into frontier-guarded Datalog program

that simulates worst-case distributed evaluation

3 Test containment

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 11

Proof Approach: Parallel-Correctness is in 2ExpTime

1 Consider only worst-case hash functions

2 Compile
• distribution policy,
• communication policy, and
• input Datalog program

into frontier-guarded Datalog program

that simulates worst-case distributed evaluation

3 Test containment

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 11

Proof Approach: Parallel-Correctness is in 2ExpTime

1 Consider only worst-case hash functions

2 Compile
• distribution policy,
• communication policy, and
• input Datalog program

into frontier-guarded Datalog program

that simulates worst-case distributed evaluation

3 Test containment

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 11

Proof Approach: Parallel-Correctness is in 2ExpTime

1 Consider only worst-case hash functions

2 Compile
• distribution policy,
• communication policy, and
• input Datalog program

into frontier-guarded Datalog program

that simulates worst-case distributed evaluation

3 Test containment

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 11

Proof Ingredient: Scattering Hash Functions

Two facts meet on the same server, if and only if,
• they were hashed by the same hash function, and
• according to the same values.

No “accidental” collisions

E(a, d , g)
E(a, b, c)

F (a, d)
G(a, g)

E(a, b, c)
F (a, d)

E(a, d , g)
G(a, g)

F (a, d)

Server 1

Server 2

Server 3

h5(c, a) = 1

h5(g , a) = 2

h1(a, d ,
d) = 1

h5(g , a) = 2

h1(
a, d

, d)
=
3

not maximally scattered

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 12

Proof Ingredient: Scattering Hash Functions

Two facts meet on the same server, if and only if,
• they were hashed by the same hash function, and
• according to the same values.

No “accidental” collisions

E(a, d , g)
E(a, b, c)

F (a, d)
G(a, g)

E(a, b, c)
F (a, d)

E(a, d , g)
G(a, g)

F (a, d)

Server 1

Server 2

Server 3

h5(c, a) = 1

h5(g , a) = 2

h1(a, d ,
d) = 1

h5(g , a) = 2

h1(
a, d

, d)
=
3

not maximally scattered

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 12

Proof Ingredient: Scattering Hash Functions

Two facts meet on the same server, if and only if,
• they were hashed by the same hash function, and
• according to the same values.

No “accidental” collisions

E(a, d , g)
E(a, b, c)

F (a, d)
G(a, g)

E(a, b, c)
F (a, d)

E(a, d , g)
G(a, g)

F (a, d)

Server 1

Server 2

Server 3

h5(c, a) = 1

h5(g , a) = 2

h1(a, d ,
d) = 1

h5(g , a) = 2

h1(
a, d

, d)
=
3

not maximally scattered

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 12

Proof Ingredient: Scattering Hash Functions

Two facts meet on the same server, if and only if,
• they were hashed by the same hash function, and
• according to the same values.

No “accidental” collisions

E(a, d , g)
E(a, b, c)

F (a, d)
G(a, g)

E(a, b, c)
F (a, d)

E(a, d , g)
G(a, g)

F (a, d)

Server 1

Server 2

Server 3

h5(c, a) = 1

h5(g , a) = 2

h1(a, d ,
d) = 1

h5(g , a) = 2

h1(
a, d

, d)
=
3

not maximally scattered

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 12

Proof Ingredient: Scattering Hash Functions

Two facts meet on the same server, if and only if,
• they were hashed by the same hash function, and
• according to the same values.

No “accidental” collisions

E(a, d , g)
E(a, b, c)

F (a, d)
G(a, g)

E(a, b, c)
F (a, d)

E(a, d , g)
G(a, g)

F (a, d)

Server 1

Server 2

Server 3

h5(c, a) = 1

h5(g , a) = 2

h1(a, d ,
d) = 1

h5(g , a) = 2

h1(
a, d

, d)
=
3

not maximally scattered

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 12

Proof Ingredient: Simulating the Distributed Evaluation

E(a, d , g)
E(a, b, c)

E(a, e, g)

E(a, b, c)

E(a, d , g)
E(a, e, g)

Server ?

Server ?

Eh(a, d , g ; g , a)
Eh(a, b, c; c, a)

Eh(a, e, g ; g , a)

h(c, a) = ?

h(g , a) = ?

h(g , a) = ?Eh(x , y , z; z, x)← E(x , y , z).

• Eh is new relation symbol
• z, x store hash values

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 13

Proof Ingredient: Simulating the Distributed Evaluation

E(a, d , g)
E(a, b, c)

E(a, e, g)

E(a, b, c)

E(a, d , g)
E(a, e, g)

Server ?

Server ?

Eh(a, d , g ; g , a)
Eh(a, b, c; c, a)

Eh(a, e, g ; g , a)

h(c, a) = ?

h(g , a) = ?

h(g , a) = ?Eh(x , y , z; z, x)← E(x , y , z).

• Eh is new relation symbol
• z, x store hash values

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 13

Proof Ingredient: Simulating the Distributed Evaluation

E(a, d , g)
E(a, b, c)

E(a, e, g)

E(a, b, c)

E(a, d , g)
E(a, e, g)

Server ?

Server ?

Eh(a, d , g ; g , a)
Eh(a, b, c; c, a)

Eh(a, e, g ; g , a)

h(c, a) = ?

h(g , a) = ?

h(g , a) = ?Eh(x , y , z; z, x)← E(x , y , z).

• Eh is new relation symbol
• z, x store hash values

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 13

Proof Ingredient: Alternating Tree Automata

Test containment of input program and compiled program
• The compiled program has exponential size

… but each rule has polynomial size

• The containment problem is 2ExpTime-complete
(Bourhis, Krötzsch, and Rudolph 2015)
involved proof, uses alternating tree automata

… but only doubly exponential in the size of rules
requires very technical analysis

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 14

Proof Ingredient: Alternating Tree Automata

Test containment of input program and compiled program
• The compiled program has exponential size

… but each rule has polynomial size

• The containment problem is 2ExpTime-complete
(Bourhis, Krötzsch, and Rudolph 2015)
involved proof, uses alternating tree automata

… but only doubly exponential in the size of rules
requires very technical analysis

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 14

Parallel-Correctness

Theorem
In the non-transitive setting, parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Corollary
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 15

Parallel-Correctness

Theorem
In the non-transitive setting, parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Corollary
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 15

Parallel-Correctness

Theorem
In the non-transitive setting, parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Corollary
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 15

Parallel-Correctness

Theorem
In the non-transitive setting, parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Theorem
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 15

Conclusion
Theorem
Parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints
• with the polynomial communication property

is 2ExpTime-complete.

Two settings with polynomial
communication property:

1 modest data-moving distribution
constraints

2 non-transitive setting

Further Prospects
• Using hash policy schemes for communication also yields 2ExpTime-completeness
• Parallel-boundedness (please, ask question)

Open Questions
• Boundary of decidability for parallel-correctness?
• Other formalism to specify policies?

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 16

Conclusion
Theorem
Parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints
• with the polynomial communication property

is 2ExpTime-complete.

Two settings with polynomial
communication property:

1 modest data-moving distribution
constraints

2 non-transitive setting

Further Prospects
• Using hash policy schemes for communication also yields 2ExpTime-completeness
• Parallel-boundedness (please, ask question)

Open Questions
• Boundary of decidability for parallel-correctness?
• Other formalism to specify policies?

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 16

Conclusion
Theorem
Parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints
• with the polynomial communication property

is 2ExpTime-complete.

Two settings with polynomial
communication property:

1 modest data-moving distribution
constraints

2 non-transitive setting

Further Prospects
• Using hash policy schemes for communication also yields 2ExpTime-completeness
• Parallel-boundedness (please, ask question)

Open Questions
• Boundary of decidability for parallel-correctness?
• Other formalism to specify policies?

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 16

Parallel-Boundedness
Parallel-boundedness
There is a bound r ∈ N such that for every
database in the distributed evaluation after r
communication rounds no new facts are
computed.

• Local computations may be unbounded!
• Does not imply FO-definability

Classical boundedness
There is a bound k ∈ N such that for every
database the fixed point computation
terminates after k iterations.

• Classical boundedness implies
FO-definability

Theorem
Parallel-boundedness for frontier-guarded Datalog programs,
• hash policy schemes, and
• data-moving distribution constraints with the polynomial communication property

that are parallel-correct is 2ExpTime-complete.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 17

Parallel-Boundedness
Parallel-boundedness
There is a bound r ∈ N such that for every
database in the distributed evaluation after r
communication rounds no new facts are
computed.

• Local computations may be unbounded!
• Does not imply FO-definability

Classical boundedness
There is a bound k ∈ N such that for every
database the fixed point computation
terminates after k iterations.

• Classical boundedness implies
FO-definability

Theorem
Parallel-boundedness for frontier-guarded Datalog programs,
• hash policy schemes, and
• data-moving distribution constraints with the polynomial communication property

that are parallel-correct is 2ExpTime-complete.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 17

Simulation of the Distributed Evaluation
Rules for local computation

T (y)← F (x , y),R(x).

Th(y ; u, v)← Fh(x , y ; u, v),Rh(x ; u, v).
add hash index
and variables

Rules for communication

Th(y ; u, v)← Fh(x , y ; u, v),Rh(x;u, v).

S(z)@κ,R(x)@λ→ R(x)@κ

Th(y ; u, v)← Fh(x , y ; u, v),
Sh(z; u, v),Rh′(x ;w , t).

inline

For all combinations of
• hash functions and variables,
• distribution constraints recursively (bounded by polynomial communication property)

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 18

Simulation of the Distributed Evaluation
Rules for local computation

T (y)← F (x , y),R(x). Th(y ; u, v)← Fh(x , y ; u, v),Rh(x ; u, v).
add hash index
and variables

Rules for communication

Th(y ; u, v)← Fh(x , y ; u, v),Rh(x;u, v).

S(z)@κ,R(x)@λ→ R(x)@κ

Th(y ; u, v)← Fh(x , y ; u, v),
Sh(z; u, v),Rh′(x ;w , t).

inline

For all combinations of
• hash functions and variables,
• distribution constraints recursively (bounded by polynomial communication property)

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 18

Simulation of the Distributed Evaluation
Rules for local computation

T (y)← F (x , y),R(x). Th(y ; u, v)← Fh(x , y ; u, v),Rh(x ; u, v).
add hash index
and variables

Rules for communication

Th(y ; u, v)← Fh(x , y ; u, v),Rh(x;u, v).

S(z)@κ,R(x)@λ→ R(x)@κ

Th(y ; u, v)← Fh(x , y ; u, v),
Sh(z; u, v),Rh′(x ;w , t).

inline

For all combinations of
• hash functions and variables,
• distribution constraints recursively (bounded by polynomial communication property)

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 18

Simulation of the Distributed Evaluation
Rules for local computation

T (y)← F (x , y),R(x). Th(y ; u, v)← Fh(x , y ; u, v),Rh(x ; u, v).
add hash index
and variables

Rules for communication

Th(y ; u, v)← Fh(x , y ; u, v),Rh(x;u, v).

S(z)@κ,R(x)@λ→ R(x)@κ

Th(y ; u, v)← Fh(x , y ; u, v),
Sh(z; u, v),Rh′(x ;w , t).

inline

For all combinations of
• hash functions and variables,
• distribution constraints recursively (bounded by polynomial communication property)

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 18

Simulation of the Distributed Evaluation
Rules for local computation

T (y)← F (x , y),R(x). Th(y ; u, v)← Fh(x , y ; u, v),Rh(x ; u, v).
add hash index
and variables

Rules for communication

Th(y ; u, v)← Fh(x , y ; u, v),Rh(x;u, v).

S(z)@κ,R(x)@λ→ R(x)@κ

Th(y ; u, v)← Fh(x , y ; u, v),
Sh(z; u, v),Rh′(x ;w , t).

inline

For all combinations of
• hash functions and variables,
• distribution constraints recursively (bounded by polynomial communication property)

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 18

Parallel-Correctness for Monadic Datalog

Monadic Datalog: Head atoms are unary

R(y)← S(y),F (w).
S(y)← E(x , y , z).

R(y)← S(y),F (w),E(x, y, z).
S(y)← E(x , y , z).

frontier-guarded

rewrite

Works in classical setting but does not preserve parallel-correctness!

Theorem
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 19

Parallel-Correctness for Monadic Datalog

Monadic Datalog: Head atoms are unary

R(y)← S(y),F (w).
S(y)← E(x , y , z).

R(y)← S(y),F (w),E(x, y, z).
S(y)← E(x , y , z).

frontier-guarded

rewrite

Works in classical setting but does not preserve parallel-correctness!

Theorem
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 19

Parallel-Correctness for Monadic Datalog

Monadic Datalog: Head atoms are unary

R(y)← S(y),F (w).
S(y)← E(x , y , z).

R(y)← S(y),F (w),E(x, y, z).
S(y)← E(x , y , z).

frontier-guarded

rewrite

Works in classical setting but does not preserve parallel-correctness!

Theorem
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 19

Parallel-Correctness for Monadic Datalog

Monadic Datalog: Head atoms are unary

R(y)← S(y),F (w).
S(y)← E(x , y , z).

R(y)← S(y),F (w),E(x, y, z).
S(y)← E(x , y , z).

frontier-guarded

rewrite

Works in classical setting but does not preserve parallel-correctness!

Theorem
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 19

Literature

Bourhis, Pierre, Markus Krötzsch, and Sebastian Rudolph (2015). “Reasonable Highly
Expressive Query Languages.” In:
International Joint Conference on Artificial Intelligence, IJCAI 2015, pp. 2826–2832.
Ketsman, Bas, Aws Albarghouthi, and Paraschos Koutris (2018). “Distribution Policies for
Datalog.” In: International Conference on Database Theory, ICDT 2018, 17:1–17:22.

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 20

	Introduction
	Parallel-Correctness

	Summary
	Appendix
	References

