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Distributed Evaluation
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• transitive closure T
• Datalog program

T (x , y)← E(x , y).
T (x , z)← T (x , y), E(y , z).
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The Parallel-Correctness Problem

Parallel-Correctness Problem
Input:
• Datalog program
• distribution policy
• communication policy

Question:

Do distributed and global evaluation
yield the same result for all databases?

Theorem (Ketsman, Albarghouthi, and Koutris 2018)
Parallel-correctness for general Datalog programs is
undecidable.

• Even for “simple” policies:
• only two servers
• all but one relations are distributed to both

servers
• no communication

• Is there a fragment of Datalog for which
parallel-correctness is decidable?
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Basics

Relational databases

E(a, b, c)︸ ︷︷ ︸
fact

,E(a, d , g),F (a, d), . . .

with extensional relation symbols
E ,F , . . .

Datalog programs consist of rules

T (x , y)︸ ︷︷ ︸
head

← E(x , y , z),
atom︷ ︸︸ ︷

R(x , v)︸ ︷︷ ︸
body

.

head atoms are intensional
(i.e. not extensional)
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Parallel-Correctness and Containment

Undecidability of parallel-correctness results from the containment problem
… and containment is undecidable for general Datalog

general Datalog

frontier-guarded
Datalog

Each rule has a guard atom
• contains all head variables
• extensional

Example:
T (x , y)← E(x, y, z),F (y , v).

monadic
Datalog

only unary
head atoms

Example:
R(x)← S(x),E(y , z, u).

)

(

rewrite

Containment is decidable for monadic Datalog

and frontier-guarded Datalog
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Distribution Policies
Idea: Use hash functions h1, . . . , hk fast, evenly distribution

E(a, d , g)
E(a, b, c)

F (a, d)
E(a, e, g)

E(a, b, c)
F (a, d)

E(a, d , g)
E(a, e, g)

Server 1

Server 2

h5(c, a) = 1

h5(g , a) = 2

h1(a, d
, d) = 1

h5(g , a) = 2

Here: Hash policy schemes
• describes how hash functions are applied
• defines class of hash functions
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Communication Policies

Data-Moving Distribution Constraints

R(x , y)@λ,S(y)@κ︸ ︷︷ ︸
body

→ R(x , y)@κ︸ ︷︷ ︸
head

Both R(x , y) and κ occur in the body.
• No creation of facts
• No creation of servers

R(a, b)
S(b)

R(a, b)
Server 1 Server 2

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 7



Communication Policies

Data-Moving Distribution Constraints

R(x , y)@λ,S(y)@κ︸ ︷︷ ︸
body

→ R(x , y)@κ︸ ︷︷ ︸
head

Both R(x , y) and κ occur in the body.
• No creation of facts
• No creation of servers

R(a, b)
S(b)

R(a, b)
Server 1 Server 2

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 7



Communication Policies

Data-Moving Distribution Constraints

R(x , y)@λ,S(y)@κ︸ ︷︷ ︸
body

→ R(x , y)@κ︸ ︷︷ ︸
head

Both R(x , y) and κ occur in the body.
• No creation of facts
• No creation of servers

R(a, b)
S(b)

R(a, b)
Server 1 Server 2

Frank Neven, Thomas Schwentick, Christopher Spinrath, Brecht Vandevoort – Parallel-Correctness and Parallel-Boundedness for Datalog Programs 7



Parallel-Correctness

Theorem
Parallel-correctness for monadic and frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.
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A Decidable Variant

Theorem
Parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints
• with the polynomial communication property

is 2ExpTime-complete.

Lower bound: reduction from the containment problem
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Distributed Proof Trees

R(a, d , e)@2

E(a, d , e)@2 S(a, e)@2

S(a, e)@1

F (e)@1 S(a, e)@3

G(a, e)@3

R(f , g , h)@3

E(f , g , h)@3 S(f , h)@3

…

S(f , g)@3

…

F (e)@2

S(a, d)@2

E(a, d , e)@2 S(a, d)@3

F (g)@3 E(a, d , g)@3

local computation
(rule application)

communication
(constraint application)

computation-free
subtree

The size of computation-free subtrees is
polynomially bounded.

Two Settings
1 Syntactical restriction of

distribution constraints
2 Changed semantics

non-transitive setting
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Proof Approach: Parallel-Correctness is in 2ExpTime

1 Consider only worst-case hash functions

2 Compile
• distribution policy,
• communication policy, and
• input Datalog program

into frontier-guarded Datalog program

that simulates worst-case distributed evaluation

3 Test containment
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Proof Ingredient: Scattering Hash Functions

Two facts meet on the same server, if and only if,
• they were hashed by the same hash function, and
• according to the same values.

No “accidental” collisions

E(a, d , g)
E(a, b, c)

F (a, d)
G(a, g)

E(a, b, c)
F (a, d)

E(a, d , g)
G(a, g)

F (a, d)

Server 1

Server 2

Server 3

h5(c, a) = 1

h5(g , a) = 2

h1(a, d ,
d) = 1

h5(g , a) = 2

h1(
a, d

, d)
=
3

not maximally scattered
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Proof Ingredient: Simulating the Distributed Evaluation

E(a, d , g)
E(a, b, c)

E(a, e, g)

E(a, b, c)

E(a, d , g)
E(a, e, g)

Server ?

Server ?

Eh(a, d , g ; g , a)
Eh(a, b, c; c, a)

Eh(a, e, g ; g , a)

h(c, a) = ?

h(g , a) = ?

h(g , a) = ?Eh(x , y , z; z, x)← E(x , y , z).

• Eh is new relation symbol
• z, x store hash values
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Proof Ingredient: Alternating Tree Automata

Test containment of input program and compiled program
• The compiled program has exponential size

… but each rule has polynomial size

• The containment problem is 2ExpTime-complete
(Bourhis, Krötzsch, and Rudolph 2015)
involved proof, uses alternating tree automata

… but only doubly exponential in the size of rules
requires very technical analysis
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Parallel-Correctness

Theorem
In the non-transitive setting, parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Corollary
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.
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Parallel-Correctness

Theorem
In the non-transitive setting, parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is 2ExpTime-complete.

Theorem
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.
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Conclusion
Theorem
Parallel-correctness for frontier-guarded Datalog,
• hash policy schemes, and
• data-moving distribution constraints
• with the polynomial communication property

is 2ExpTime-complete.

Two settings with polynomial
communication property:

1 modest data-moving distribution
constraints

2 non-transitive setting

Further Prospects
• Using hash policy schemes for communication also yields 2ExpTime-completeness
• Parallel-boundedness (please, ask question)

Open Questions
• Boundary of decidability for parallel-correctness?
• Other formalism to specify policies?
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Parallel-Boundedness
Parallel-boundedness
There is a bound r ∈ N such that for every
database in the distributed evaluation after r
communication rounds no new facts are
computed.

• Local computations may be unbounded!
• Does not imply FO-definability

Classical boundedness
There is a bound k ∈ N such that for every
database the fixed point computation
terminates after k iterations.

• Classical boundedness implies
FO-definability

Theorem
Parallel-boundedness for frontier-guarded Datalog programs,
• hash policy schemes, and
• data-moving distribution constraints with the polynomial communication property

that are parallel-correct is 2ExpTime-complete.
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Simulation of the Distributed Evaluation
Rules for local computation

T (y)← F (x , y),R(x).

Th(y ; u, v)← Fh(x , y ; u, v),Rh(x ; u, v).
add hash index
and variables

Rules for communication

Th(y ; u, v)← Fh(x , y ; u, v),Rh(x;u, v).

S(z)@κ,R(x)@λ→ R(x)@κ

Th(y ; u, v)← Fh(x , y ; u, v),
Sh(z; u, v),Rh′(x ;w , t).

inline

For all combinations of
• hash functions and variables,
• distribution constraints recursively (bounded by polynomial communication property)
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Parallel-Correctness for Monadic Datalog

Monadic Datalog: Head atoms are unary

R(y)← S(y),F (w).
S(y)← E(x , y , z).

R(y)← S(y),F (w),E(x, y, z).
S(y)← E(x , y , z).

frontier-guarded

rewrite

Works in classical setting but does not preserve parallel-correctness!

Theorem
In the non-transitive setting, parallel-correctness for monadic Datalog,
• hash policy schemes, and
• data-moving distribution constraints

is undecidable.
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