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Graphs Morphisms

 Given the following query:

 What you think is a valid match?

 A:            B:                C:          D:
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 Given the following query:

 What you think is a valid match?
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Graph Simulation Dual Simulation Subgraph Isomorphism Subgraph Homomorphism

✓ ✓ ✓ ✓

Well, depends on the 
matching semantics.
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Matching Semantics



Plethora of Matching Semantics
[Miller et al., “Research Directions for Big Data Graph Analytics”, IEEE International Congress on Big Data, New York City, NY, USA, June 27 - July 2, 2015]

Different Matching Semantics
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Plethora of Matching Semantics – Example

Example

Results of Different Semantics
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Graph Simulation

Example

I φ(A) = {1, 2}
I φ(B) = {1, 2}
I φ(C) = {6, 5, 4}
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Definition

I Given a query graph Q = (VQ ,EQ) and a data graph G = (VG ,EG)

I A graph simulation matching is a function φ : VQ → P(VG) such that for all vQ ∈ VQ

1. for all vG ∈ φ(vQ) the properties of vG and vQ match (here: they have the same color) and
2. for all vG ∈ φ(vQ) and (vQ ,wQ) ∈ EQ there is a wG ∈ φ(wQ) with (vG ,wG) ∈ EG
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I 1 ∈ φ(A) and (A,B) ∈ EQ : there is 2 ∈ φ(B) with (1, 2) ∈ EG

I 1 ∈ φ(A) and (A,C) ∈ EQ : there is 6 ∈ φ(C) with (1, 6) ∈ EG

I 2 ∈ φ(A) and (A,B) ∈ EQ : there is 1 ∈ φ(B) with (2, 1) ∈ EG

I 2 ∈ φ(A) and (A,C) ∈ EQ : there is 5 ∈ φ(C) with (2, 5) ∈ EG

I 1 ∈ φ(B) and (B,C) ∈ EQ : there is 6 ∈ φ(C) with (1, 6) ∈ EG

I 2 ∈ φ(B) and (B,C) ∈ EQ : there is 5 ∈ φ(C) with (2, 5) ∈ EG

I C has no outgoing edges
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Definition

I Given a query graph Q = (VQ ,EQ) and a data graph G = (VG ,EG)

I A graph simulation matching is a function φ : VQ → P(VG) such that for all vQ ∈ VQ

1. for all vG ∈ φ(vQ) the properties of vG and vQ match (here: they have the same color) and
2. for all vG ∈ φ(vQ) and (vQ ,wQ) ∈ EQ there is a wG ∈ φ(wQ) with (vG ,wG) ∈ EG

3. for all vG ∈ φ(vQ) and (wQ , vQ) ∈ EQ there is a wG ∈ φ(wQ) with (wG , vG) ∈ EG
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I A has no incoming edges

I 1 ∈ φ(B) and (A,B) ∈ EQ : there is 2 ∈ φ(A) with (2, 1) ∈ EG

I 2 ∈ φ(B) and (A,B) ∈ EQ : there is 1 ∈ φ(A) with (1, 2) ∈ EG

I 5 ∈ φ(C) and (A,C) ∈ EQ : there is 2 ∈ φ(A) with (2, 5) ∈ EG

I 5 ∈ φ(C) and (B,C) ∈ EQ : there is 2 ∈ φ(B) with (2, 5) ∈ EG

I 6 ∈ φ(C) and (A,C) ∈ EQ : there is 1 ∈ φ(A) with (1, 6) ∈ EG

I 6 ∈ φ(C) and (B,C) ∈ EQ : there is 1 ∈ φ(B) with (1, 6) ∈ EG
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I Given two graphs G = (VG ,EG) and H = (VH ,EH)

I G and H are homomorph, if there is a surjective function σ : VG → VH
that preserves adjaceny:

I if (vi , vj) ∈ EG then (σ(vi), σ(vj)) ∈ EH

I σ is called a homomorphism from G to H
I Note: there may be multiple homomorphism between two graphs
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I Given two graphs G = (VG ,EG) and H = (VH ,EH)

I G and H are isomorph, if there is a bijective function σ : VG → VH
that preserves adjaceny and non-adjacency:

I (vi , vj) ∈ EG if and only if (σ(vi), σ(vj)) ∈ EH

I σ is called a isomorphism between G and H
I Note: there may be multiple isomorphisms between two graphs
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Graph Similarities

Graph Homomorphism

I Given two graphs G = (VG ,EG) and
H = (VH ,EH)

I G and H are homomorph if
I there is a surjective function σ : VG → VH
I such that, if (vi , vj) ∈ EG then

(σ(vi), σ(vj)) ∈ EH
(σ preserves adjaceny)

Graph Isomorphism

I Given two graphs G = (VG ,EG) and
H = (VH ,EH)

I G and H are isomorph if
I there is a bijective function σ : VG → VH
I such that, (vi , vj) ∈ EG if and only if

(σ(vi), σ(vj)) ∈ EH
(σ preserves adjaceny and non-adjaceny)

Cool!
Can we apply this to find subgraphs?
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I Given a query graph Q = (VQ ,EQ) and a data graph G = (VG ,EG)

I The subgraph R = (VR ,ER) is a result for Q on G if

1. VR ⊆ VG and ER ⊆ EG and
(R is a subgraph of G)

2. there is a surjective function σ : VQ → VR such that (vi , vj) ∈ EQ if and only if (σ(vi), σ(vj)) ∈ ER
(Q and R are homomorph and R contains no more edges than necessary)

3. for all vQ ∈ VQ the properties of vQ and σ(vQ) match
4. for all (vQ ,wQ) ∈ EQ the properties of (vQ ,wQ) and (σ(vQ), σ(wQ)) match
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Notes

I Q can have more vertices or edges than R , i.e. in general |VQ | ≥ |VR | and |EQ | ≥ |ER |
I R is not given, R has to be determined by the query mechanism (search problem)
I Vertices and edges can be part of multiple results
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I Given a query graph Q = (VQ ,EQ) and a data graph G = (VG ,EG)

I The subgraph R = (VR ,ER) is a result for Q on G if

1. VR ⊆ VG and ER ⊆ EG and
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4. for all (vQ ,wQ) ∈ EQ the properties of (vQ ,wQ) and (σ(vQ), σ(wQ)) match
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Notes

I Q and R have always the same number of vertices and edges, i.e. |VQ | = |VR | and |EQ | = |ER |
I R is not given, R has to be determined by the query mechanism (search problem)
I Vertices and edges can be part of multiple results
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Subgraph Matching Semantics

Subraph Homomorphism

I Given a query graph Q = (VQ ,EQ) and a
data graph G = (VG ,EG)

I R = (VR ,ER) is a result for Q if
1. VR ⊆ VG and ER ⊆ EGG;
2. there is a surjective function σ : VQ → VR
3. such that (vi , vj) ∈ EQ if and only if

(σ(vi), σ(vj)) ∈ ER
4. properties of vertices vQ ∈ VQ and their

images σ(vQ) match
5. properties of edges (vQ ,wQ) ∈ EQ and

their images (σ(vQ), σ(wQ)) ∈ ER match
I Q can have more vertices and edges than R

Subraph Isomorphism

I Given a query graph Q = (VQ ,EQ) and a
data graph G = (VG ,EG)

I R = (VR ,ER) is a result for Q if
1. VR ⊆ VG and ER ⊆ EGG;
2. there is a bijective function σ : VQ → VR
3. such that (vi , vj) ∈ EQ if and only if

(σ(vi), σ(vj)) ∈ ER
4. properties of vertices vQ ∈ VQ and their

images σ(vQ) match
5. properties of edges (vQ ,wQ) ∈ EQ and

their images (σ(vQ), σ(wQ)) ∈ ER match
I Q and R always have the same number of

vertices and edges

A single vertex in VG can be matched multiple times in a homomorphic
subgraph but only once in an isomorphic subgraph
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Why Homomorphisms are useful…

Example

Look for all pairs of friends and the city each friend lives in

Query graph Q

p1 p2

c1 c2

Data graph G

Leipzig Anne Berlin

Chris Mary

Assuming subgraph isomorphism, which tuples (c1, p1, p2, c2) represent results?
A: (Leipzig, Chris, Anne, Berlin)
B: (Leipzig, Chris, Mary, Berlin)
C: (Berlin, Anne, Mary, Berlin)
D: (Berlin, Anne, Chris, Leipzig)
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Chris Mary

Assuming subgraph isomorphism, which tuples (c1, p1, p2, c2) represent results?
A: (Leipzig, Chris, Anne, Berlin)
B: (Leipzig, Chris, Mary, Berlin)
C: (Berlin, Anne, Mary, Berlin) no result: c1 and c2 cannot be matched to the same vertex “Berlin”
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Example
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