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GQL and openCypher

openCypher
[https://opencypher.org]

I Declarative language for property graphs
I open source specification
I aims to be human readable
I Implemented by various database, e.g.

I Amazon Neptune, CAPS, Memgraph, Neo4j,
Redisgraph, SAP HANA Graph, …

I major influence for GQL
I openCypher “evolves” towards GQL

GQL
[https://www.gqlstandards.org/]

I ISO Standard of a property graph query
language

I ISO/IEC 39075:2024
I First version published in April 2024
I 610 pages
I Syntax for specifying graph patterns is shared

with the new SQL Standard SQL/PGQ for
graph queries

openCypher 9 GQL
Standard
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Data Model of Neo4j: Property Graphs
[https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/]

Property Graphs

consist of

I nodes,
I edges,
I labels,
I properties.
I types.

Neo4j Terminology

I Edges are called
relationships

Example

p1
name= “Tom Hanks”
birthyear= 1956

{:Person,:Acteur}

p2
name= “Robert Zemeckis”
birthyear= 1951

{:Person}

m title= “Forrest Gump”
released= 1994

{:Movie}

{:ACTED_IN}

roles= [“Forrest”]

{:
DI

RE
CT

ED
}

I Every relationship has exactly one label, which is its type
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A Simple Example

Example
“The name of all persons and the release year of
movies they like”
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Ingredients

I A pattern consisting of…
I …vertex patterns (p:Person), (m:Movie)
I …an edge pattern -[:LIKES]->

I A RETURN clause

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 5



A Simple Example

Example
“The name of all persons and the release year of
movies they like”
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Ingredients

I A pattern consisting of…
I …vertex patterns (p:Person), (m:Movie)
I …an edge pattern -[:LIKES]->

I A RETURN clause

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 5



Pattern Syntax – Vertex Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Vertex Pattern

Pattern Description

() unidentified/anonymous vertex
(matrix) vertex identified by/bound to variable

matrix

(:Movie) unidentified vertex with label Movie
(:Movie|(Series & !Cancelled)) vertex with complex label expression
(matrix:Movie {title: "The Matrix"}) property title has value “The Matrix”
(matrix:Movie {title: "The Matrix", released: 1997}) …and property released equals the integer

1997
(matrix:Movie WHERE matrix.released >= 1997) more verbose syntax

In a Neo4j database each node can have an arbitrary number of labels
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Pattern Syntax – Relationship Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Relationship (Edge) Pattern

Pattern Description

-- unidentified edge, matches edges in either direction
--> unidentified edge, matches in forward direction
<-- unidentified edge, matches in reverse direction
-[:LIKES]-> unidentified edge with type LIKES
-[role]-> forward edge bound to variable role
-[role:ACTED_IN]-> forward edge bound to variable role with type

ACTED_IN

-[role:ACTED_IN WHERE role.name = "Neo"]-> …and property name has value “Neo”

In a Neo4j database each relationship has exactly one type
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Pattern Syntax – Path Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Fixed-length Path Patterns

I String of alternating vertex and edge pattern
I Starting and ending with a vertex pattern
I (a)-->(b)<--(c)--(d)-->(a)-->(e)

a b c d e

Example

(p:Actor WHERE p.name = "Keanu Reeves")
-[role:ACTED_IN WHERE role.name = "Neo"]->

(m:Movie WHERE m.title = "The Matrix")
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Pattern Syntax – Variable-length Path Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns

I Path of varying/unknown length can be matched
by adding a quantifier {n,m}

I n is a lower, and m a upper bound for
the number of repetitions

I (a)-->(b)(()<--()--()-->()){1,2}()-->(e) is equivalent to the “union of”
I (a)-->(b)<--()--()-->()-->(e) and
I (a)-->(b)<--()--()-->()<--()--()-->()-->(e)

I Both upper and lower bound are optional:
I At most two repetitions: (p1)((:Post)-[:REPLY_TO]->(:Post)){,2}(p2)
I At least three repetitions: (p1)((:Post)-[:REPLY_TO]->(:Post)){3,}(p2)
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Pattern Syntax – Variable-length Path Patterns Cont’d
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns – Shorthands

I Shorthands for common cases:
I Zero or more repetitions (Kleene star): (p1)((:Post)-[:REPLY_TO]->(:Post))*(p2)
I At least one repetition: (p1)((:Post)-[:REPLY_TO]->(:Post))+(p2)

I Shorthand for repeating a single edge pattern:
I (p1:Post)-[:REPLY_TO]->*(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())*(p2:Post)
I (p1:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())+(p2:Post)
I (p1:Post)-[:REPLY_TO]->{2,4}(p2:Post) instead of

(p1:Post)(()-[:REPLY_TO]->()){2,4}(p2:Post)
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I Can only be used with single edge patterns
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Pattern Syntax – Graph Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Graph Patterns

I One or multiple path pattern
I separated by commata

a b c d e

Example

(a)-->(b)<--(c)--(d)-->(a)-->(e), (e)-->(b)-->(d), (a)-->(a)

“Warning”

I Path patterns should have at least one shared variable
I Without shared variable the graph pattern is disconnected

I Results in a cross-product of the results for connected sub patterns
I Quadratic blow up in result size and computational complexity
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Pattern Semantics

Semantics (of Neo4j)

I Homomorphism-like semantics
I but every edge can only be matched once
I GQL: Different edges matching semantics
I openCypher: trail semantics

Example
How many matches does the following graph
pattern have?

(p1:Person)
-[:LIKES]->
(m:Movie {title: "The Godfather}),

(p2:Person)-[:LIKES]->(m)

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}
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Pattern Syntax
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Which of these strings are patterns?

A: (a,b:Movie)-[:SHOWN_IN]->(e),(f)

B: (a:Movie)-[:SHOWN_IN]->*()

C: (:Movie)-[:SHOWN_IN]->

D: ()<--(a:Movie)

Which patterns specify a loop?

A: (a:Movie WHERE a.name = "Matrix")-->(a)

B: (a:Movie WHERE a.name = "Matrix")-->(b:Movie WHERE b.name = "Matrix")

C: (a:Movie WHERE a.name = "Matrix")-->(a:Movie WHERE a.name = "Matrix")

D: (a:Movie WHERE name = "Matrix")-->({name: "Matrix"})
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Matching, Filtering, Result Definition



Matching

MATCH clause

I Primary way of querying Neo4j
I Takes a subgraph pattern
I and binds variables to matches

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Question
How many answers does the query return?

Result p.name m.released
Lucy 1993
Lucy 1993
Alex 1993
Alex 1993
Alex 1972

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}
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Matching

Multiple MATCH clauses

I A query can have multiple MATCH clauses
I Variable bindings are “passed” to the next

MATCH

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Question
How many answers does the query return?

9 answers

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

I Every edge can only be matched once
per MATCH clause
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Optional Match
[https://neo4j.com/docs/cypher-manual/current/clauses/optional-match/]

Optional Match clause

I Matches patterns, just like MATCH

I Matches the complete pattern or not
I If no matches are found,

OPTIONAL MATCH will use nulls as bindings
I Like relational left outer join

Example

MATCH (a:Movie)
OPTIONAL MATCH (a)<-[:WROTE]-(x)
RETURN a.title, x.name
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Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

WHERE clause
I After an (OPTIONAL) MATCH, it adds constraints to the

(optional) match
I After a WITH clause, it just filters the result

Example
MATCH (n)
WHERE n.name = "Peter"

OR (n.age < 30 AND n.name = "Tobias")
OR NOT (n.name = "Tobias" OR n.name="Peter")

RETURN n

n
Node[0]{name:”Andres”,age:36,belt:”white”}
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999
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Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on node label
MATCH (n) WHERE n:Swedish RETURN n

n
Node[0]{name:”Andres”,age:36,belt:”white”}

I Filter on a node property
MATCH (n) WHERE n.age < 30 RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}

I Filter on a relationships
MATCH (n)-[k]->(f) WHERE k:KNOWS AND k.since < 2000 RETURN f

f
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}
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Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on lists
MATCH (n) WHERE n.name IN ["Peter", "Tobias"] RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

I Filter on string …
I properties: MATCH (n) WHERE n.name = 'Peter' RETURN n
I prefixes: MATCH (n) WHERE n.name STARTS WITH 'Pet' RETURN n
I suffixes: MATCH (n) WHERE n.name ENDS WITH 'ter' RETURN n
I infixes: MATCH (n) WHERE n.name CONTAINS 'ete' RETURN n
I regex: MATCH (n) WHERE n.name =~ 'P[et]+r?' RETURN n

n
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}
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Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
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2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on property existence
MATCH (n) WHERE n.belt IS NOT NULL RETURN n
(default value for missing properties is NULL)

n
Node[0]{name:”Andres”,age:36,belt:”white”}

I Filter on property absence/non-existence
MATCH (n) WHERE n.belt IS NULL RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}
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Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on patterns
MATCH (t { name: 'Tobias' }), (others)
WHERE others.age > 30 AND (tobias)<--(others)
RETURN others

others
Node[0]{name:”Andres”,age:36,belt:”white”}
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RETURN others
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Node[0]{name:”Andres”,age:36,belt:”white”}

I …with negation
MATCH (persons), (p {name: 'Peter '})
WHERE NOT (persons)-->(p)
RETURN persons

persons
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}
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RETURN others

others
Node[0]{name:”Andres”,age:36,belt:”white”}

I …on existence
MATCH (person) WHERE EXISTS((person)-->())
RETURN person

person
Node[0]{name:”Andres”,age:36,belt:”white”}
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Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

RETURN clause

I Defines what to include in the query result set
I Comparable with relational projection
I Only once per query
I Allows to return nodes, edges, properties, or any expressions
I Column can be rename using AS <new name>

Example
MATCH (n)
RETURN n, "node " + id(n) + " is " +

CASE WHEN n.title IS NOT NULL THEN "a Movie"
WHEN EXISTS(n.name) THEN "a Person"
ELSE "something unknown"

END AS about
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Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Return nodes
MATCH (n { name: "B" }) RETURN n

n
Node[1]{name:”B”}

I Return relationships
MATCH (n { name: "A" })-[r:KNOWS]->(c) RETURN r

r
:KNOWS[0]{}

I Return properties
MATCH (n { name: "A" }) RETURN n.name

n.name
“A”

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}
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Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Column alias
MATCH (a { name: "A" })
RETURN a.age AS SomethingTotallyDifferent

SomethingTotallyDifferent
55

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

I Return all bounded elements
MATCH p=(a { name: "A" })-[r]->(b) RETURN *

a b
p

r

Node[0]{name:”A”,happy:”Yes!”,age:55} Node[1]{name:”B”} [Node[0]{name:”A”,happy:”Yes!”,age:
55},:BLOCKS[1]{},Node[1]{name:”B”}]

:BLOCKS[1]{}

Node[0]{name:”A”,happy:”Yes!”,age: 55} Node[1]{name:”B”} [Node[0]{name:”A”,happy:”Yes!”,age:
55},:KNOWS[0]{},Node[1]{name:”B”}]

:KNOWS[0]{}
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Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Returning optional properties
MATCH (n) RETURN n.age

n.age
55
null

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

I Other expressions
MATCH (a { name: "A" }) RETURN a.age > 30, "I'm a literal", (a)-->()

a.age > 30 “I’m a literal”
(a)-->()

true “I’m a literal” [[Node[0]{name:”A”,happy:”Yes!”,age:55},:BLOCKS[1]{},Node[1]{name:”B”}],
[Node[0]{name:”A”,happy:”Yes!”,age:55},:KNOWS[0]{},Node[1]{name:”B”}]]

I Unique results
MATCH (a { name: "A" })-->(b) RETURN DISTINCT b

b
Node[1]{name:”B”}
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Result Modification – Sorting
[https://neo4j.com/docs/cypher-manual/current/clauses/order-by/]

ORDER BY clause

I Sub-clause following RETURN or WITH

I Specifies how the output should be sorted
I Can only sort on properties,

not nodes or relationships
I null will come last in ascending order (ASC),

and first in descending order (DESC)

Example (Order by property)

MATCH (n) RETURN n ORDER BY n.name

n
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}
Node[2]{name:”C”,age:32,length:185}

Example (Order by multiple property)

MATCH (n) RETURN n ORDER BY n.age, n.name

n
Node[2]{name:”C”,age:32,length:185}
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}

Example (Order nodes in descending order)

MATCH (n) RETURN n ORDER BY n.name DESC

n
Node[2]{name:”C”,age:32,length:185}
Node[1]{name:”B”,age:34}
Node[0]{name:”A”,age:34,length:170}
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Result Modification – LIMIT clause
[https://neo4j.com/docs/cypher-manual/current/clauses/limit/]

LIMIT clause

I Constrains the number of rows in the output
I Accepts any expression that evaluates to a positive integer
I Expression cannot refer to nodes or relationships
I Return first from the top

MATCH (n) RETURN n ORDER BY n.name LIMIT 3

I Return first from expression
MATCH (n) RETURN n ORDER BY n.name LIMIT toInt(3 * rand()) + 1

1 name= “A”

3 name= “C” 4 name= “D” 5 name= “E”2 name= “B”

{:KNOWS} {:KNOWS} {:KNOWS} {:KNOWS}

n
Node[0]{name:”A”}
Node[0]{name:”B”}
Node[0]{name:”C”}
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Result Modification – LIMIT clause
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Result Modification – OFFSET clause
[https://neo4j.com/docs/cypher-manual/current/clauses/skip/]

OFFSET clause

I Defines from which row to start including the rows in the output
I Result set will get trimmed from the top
I Same rules as for LIMIT
I Skip first three

MATCH (n) RETURN n ORDER BY n.name OFFSET 3

I SKIP is an alias supported by Neo4j

1 name= “A”

3 name= “C” 4 name= “D” 5 name= “E”2 name= “B”

{:KNOWS} {:KNOWS} {:KNOWS} {:KNOWS}
n
Node[0]{name:”D”}
Node[0]{name:”E”}
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Aggregation
[https://neo4j.com/docs/cypher-manual/current/functions/aggregating/]

Group by/Aggregation

I Implicit group by (that is, there is no keyword!)
I Expressions without an aggregation function will be the group keys
I Expressions with an aggregation function will produce aggregates

I DISTINCT within the aggregation function removes duplicates in a group before the aggregation
I ALL aggregates duplicates (default)

Example
MATCH (p:Person {name: "Ann"})-->(friend:Person)-->(fof:Person)
RETURN p.name, count(DISTINCT fof), count(ALL fof), count(fof)

1 name= “Ann”

2 name= “Bob”

3 name= “Tim”

5 name= “Jef”

4 name= “Lee”

6 name= “Cyn”

Result
p.name DISTINCT

count
ALL
count count

Ann 3 4 4
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Aggregation
[https://neo4j.com/docs/cypher-manual/current/functions/aggregating/]

Some Common Aggregation Functions
Function Description
avg() Returns the average of a numeric column.
collect() Returns a list containing all collected values.
count() Returns the number of rows.
max() Returns the highest value in a numeric column.
min() Returns the lowest value in a numeric column.
percentileCont() Returns the percentile of a given value over a group using linear

interpolation.
percentileDisc() Returns the nearest value to a given percentile over a group using

a rounding method.
stDev() Returns the standard deviation for a given value over a group for a

sample of a population.
stDevP() Returns the standard deviation for a given value over a group for

an entire population.
sum() Returns the sum of a numeric column.
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Query Composition
[https://neo4j.com/docs/cypher-manual/current/clauses/with/]

WITH clause

I Like RETURN followed by a process pipe
I Chains subqueries together, piping the results from one to be used as starting points in the next
I Like RETURN, WITH defines – including aggregation – the output before it is passed on
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Query Composition
[https://neo4j.com/docs/cypher-manual/current/clauses/with/]

WITH clause

I Like RETURN followed by a process pipe
I Chains subqueries together, piping the results from one to be used as starting points in the next
I Like RETURN, WITH defines – including aggregation – the output before it is passed on

Example (Friends of five best friends)

Limit search space based on order of properties or aggregates
MATCH (p)-[f:FRIENDS]->(p2)
WITH f, p2 ORDER BY f.rating DESC LIMIT 5
MATCH (p2)-[:FRIENDS]->(p3)
RETURN DISTINCT p3
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Query Composition
[https://neo4j.com/docs/cypher-manual/current/clauses/with/]

WITH clause

I Like RETURN followed by a process pipe
I Chains subqueries together, piping the results from one to be used as starting points in the next
I Like RETURN, WITH defines – including aggregation – the output before it is passed on

Example (Average age of the youngest player in each team)

Aggregation of aggregates
MATCH (p:Player)-[:PLAYS]->(t:Team)
WITH t, min(p.age) AS age
RETURN avg(age)
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Query Composition
[https://neo4j.com/docs/cypher-manual/current/clauses/with/]

WITH clause

I Like RETURN followed by a process pipe
I Chains subqueries together, piping the results from one to be used as starting points in the next
I Like RETURN, WITH defines – including aggregation – the output before it is passed on

Example (Teams whose players are on average younger than 25)

Filter on aggregates
MATCH (p:Player)-[:PLAYS]->(t:Team)
WITH t, avg(p.age) AS age WHERE age < 25
RETURN t
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Query Composition – Unions
[https://neo4j.com/docs/cypher-manual/current/clauses/union/]

UNION DISTINCT or UNION
Combines two query results and removes duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”

UNION ALL
Combines two query results and retains duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”
“Hitchcock”

1 name= “Hitchcock”

{:Actor}

2 name= “Helen Mirren”

{:Actor}

3 title= “Hitchcock”

{:Movie}

4 name= “Anthony Hopkins”

{:Actor}

{:ACTS_IN}

{:ACTS_IN}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 32



Query Composition – Unions
[https://neo4j.com/docs/cypher-manual/current/clauses/union/]

UNION DISTINCT or UNION
Combines two query results and removes duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”

UNION ALL
Combines two query results and retains duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”
“Hitchcock”

1 name= “Hitchcock”

{:Actor}

2 name= “Helen Mirren”

{:Actor}

3 title= “Hitchcock”

{:Movie}

4 name= “Anthony Hopkins”

{:Actor}

{:ACTS_IN}

{:ACTS_IN}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 32



Query Composition – Unions
[https://neo4j.com/docs/cypher-manual/current/clauses/union/]

UNION DISTINCT or UNION
Combines two query results and removes duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”

UNION ALL
Combines two query results and retains duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”
“Hitchcock”

1 name= “Hitchcock”

{:Actor}

2 name= “Helen Mirren”

{:Actor}

3 title= “Hitchcock”

{:Movie}

4 name= “Anthony Hopkins”

{:Actor}

{:ACTS_IN}

{:ACTS_IN}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 32



Query Composition – Unions
[https://neo4j.com/docs/cypher-manual/current/clauses/union/]

UNION DISTINCT or UNION
Combines two query results and removes duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”

UNION ALL
Combines two query results and retains duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”
“Hitchcock”

1 name= “Hitchcock”

{:Actor}

2 name= “Helen Mirren”

{:Actor}

3 title= “Hitchcock”

{:Movie}

4 name= “Anthony Hopkins”

{:Actor}

{:ACTS_IN}

{:ACTS_IN}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 32



Lists



Lists
[https://neo4j.com/docs/cypher-manual/current/values-and-types/lists/]

I Lists can be stored as properties
(if all elements have the same type) m1

title= “True Romance”
lang= [“en”, “fr”, “de”]

{Movie}

p1
name= “Lucy”
speaks= [“en”, “fr”]

{Person}
{:LIKES}

Example

I All movies available in English and French

MATCH (m:Movie)
WHERE "en" IN m.lang AND "fr" IN m.lang
RETURN m.title

m.title
“True Romance”

I All movies and the languages they are available in

MATCH (m:Movie)
UNWIND m.lang AS language
RETURN m.title, language

m.title language
“True Romance” “en”
“True Romance” “fr”
“True Romance” “de”
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Filtering on Lists
[https://neo4j.com/docs/cypher-manual/current/functions/predicate/]

Predicate Functions for Lists

I Tests whether a predicate holds for all elements of this list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE all(b IN bs WHERE b.age > a.age)
RETURN a.name

Result:
a.name
Charlie
Bob

I Tests whether a predicate holds for at least one element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE any(b IN bs WHERE b.age < a.age)
RETURN a.name

Result: a.name
Alice

1
name= “Alice”
age= 38

2
name= “Charlie”
age= 53

3
name= “Bob”
age= 25

4
name= “Daniel”
age= 54

5
name= “Eskil”
age= 41

{:KNOWS} {:KNOWS}

{:KNOWS} {:MARRIED}

{:KNOWS}
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Filtering on Lists Cont’d
[https://neo4j.com/docs/cypher-manual/current/functions/predicate/]

Predicate Functions for Lists

I Tests whether a predicate holds for exactly one element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE single(b IN bs WHERE b.age < a.age)
RETURN a.name

Result: a.name
Alice

I Tests whether a predicate holds for no element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE none(b IN bs WHERE b.age < a.age)
RETURN a.name

Result:
a.name
Charlie
Bob

1
name= “Alice”
age= 38

2
name= “Charlie”
age= 53

3
name= “Bob”
age= 25

4
name= “Daniel”
age= 54

5
name= “Eskil”
age= 41

{:KNOWS} {:KNOWS}

{:KNOWS} {:MARRIED}

{:KNOWS}
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Path Variables
[https://neo4j.com/docs/cypher-manual/current/clauses/match/#find-paths]

Path Variables

I Matched paths can be assigned to variables for further processing
I UNWIND can be used to access nodes and edges on the path
I Paths can be returned

Example

MATCH p = (a:Author)-[:WROTE]->(:Post)((:Post)-[:REPLY_TO]->(:Post))+
UNWIND nodes(p) AS post
RETURN p, post.date

I When working with path pattern care should to be taken: they easily match a large number of
paths (exponential blow-up)
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UNWIND nodes(p) AS post
RETURN p, post.date

I When working with path pattern care should to be taken: they easily match a large number of
paths (exponential blow-up)
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Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]

Shortest Paths

I Path between two nodes with minimum number of edges

Example

I Match all shortest paths
MATCH p = ALL SHORTEST
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

I Are the queries above and below equivalent?
MATCH p = ALL SHORTEST (start:City)-[:TRAIN]->+(dest:City)
WHERE start.name = "Lyon" AND dest.name = "Berlin"
RETURN p

I No, for the second query all shortest paths between any two cities are computed and then filtered
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Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]
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Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]

Shortest Paths
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Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]

Shortest Paths – Variants

Example

I Match the top k shortest paths
MATCH p = SHORTEST 5
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

I Match an arbitrary shortest path (same as SHORTEST 1)
MATCH p = ANY
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p
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Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]
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