
Big Graph Processing Systems
Part II: Property Graphs
I Chapter 1: A Concrete Query Language

Christopher Spinrath
CNRS – LIRIS – Lyon 1 Université

DISS Master 2025

This presentation is an adaption of slides from Angela Bonifati



Graph Query Languages

Source: Petra Selmer
[https://www.gqlstandards.org/existing-languages, 10/01/2025, Copyright © 2018-2024 JCC Consulting, Inc., licensed under the Apache License, Version 2.0]

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 1



Graph Database Engines

S
co

re
 (

lo
ga

rit
hm

ic
 s

ca
le

)
DB-Engines Ranking of Graph DBMS Neo4j

Microsoft Azure Cosmos DB
Aerospike
Virtuoso
ArangoDB
OrientDB
GraphDB
Memgraph
Amazon Neptune
JanusGraph
Stardog
NebulaGraph
Fauna
TigerGraph
Dgraph
Giraph
SurrealDB
Blazegraph
AllegroGraph
TypeDB
Graph Engine
Fluree
Apache HugeGraph
InfiniteGraph
AnzoGraph DB
RDFox
FlockDB
HyperGraphDB
AgensGraph
FalkorDB
Ultipa
TerminusDB
Sparksee

1/22014 2016 2018 2020 2022 2024

1

10

0.001

0.01

0.1

© January 2025, DB-Engines.com

Neo4j supports openCypher and

(a subset of) GQL

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 2



Graph Database Engines

S
co

re
 (

lo
ga

rit
hm

ic
 s

ca
le

)
DB-Engines Ranking of Graph DBMS Neo4j

Microsoft Azure Cosmos DB
Aerospike
Virtuoso
ArangoDB
OrientDB
GraphDB
Memgraph
Amazon Neptune
JanusGraph
Stardog
NebulaGraph
Fauna
TigerGraph
Dgraph
Giraph
SurrealDB
Blazegraph
AllegroGraph
TypeDB
Graph Engine
Fluree
Apache HugeGraph
InfiniteGraph
AnzoGraph DB
RDFox
FlockDB
HyperGraphDB
AgensGraph
FalkorDB
Ultipa
TerminusDB
Sparksee

1/22014 2016 2018 2020 2022 2024

1

10

0.001

0.01

0.1

© January 2025, DB-Engines.com

Neo4j supports openCypher and

(a subset of) GQL

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 2



GQL and openCypher

openCypher
[https://opencypher.org]

I Declarative language for property graphs
I open source specification
I aims to be human readable
I Implemented by various database, e.g.

I Amazon Neptune, CAPS, Memgraph, Neo4j,
Redisgraph, SAP HANA Graph, …

I major influence for GQL
I openCypher “evolves” towards GQL

GQL
[https://www.gqlstandards.org/]

I ISO Standard of a property graph query
language

I ISO/IEC 39075:2024
I First version published in April 2024
I 610 pages
I Syntax for specifying graph patterns is shared

with the new SQL Standard SQL/PGQ for
graph queries

openCypher 9 GQL
Standard

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 3

https://www.iso.org/standard/76120.html


GQL and openCypher

openCypher
[https://opencypher.org]

I Declarative language for property graphs
I open source specification
I aims to be human readable
I Implemented by various database, e.g.

I Amazon Neptune, CAPS, Memgraph, Neo4j,
Redisgraph, SAP HANA Graph, …

I major influence for GQL
I openCypher “evolves” towards GQL

GQL
[https://www.gqlstandards.org/]

I ISO Standard of a property graph query
language

I ISO/IEC 39075:2024
I First version published in April 2024
I 610 pages
I Syntax for specifying graph patterns is shared

with the new SQL Standard SQL/PGQ for
graph queries

openCypher 9 GQL
Standard

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 3

https://www.iso.org/standard/76120.html


GQL and openCypher

openCypher
[https://opencypher.org]

I Declarative language for property graphs
I open source specification
I aims to be human readable
I Implemented by various database, e.g.

I Amazon Neptune, CAPS, Memgraph, Neo4j,
Redisgraph, SAP HANA Graph, …

I major influence for GQL
I openCypher “evolves” towards GQL

GQL
[https://www.gqlstandards.org/]

I ISO Standard of a property graph query
language

I ISO/IEC 39075:2024
I First version published in April 2024
I 610 pages
I Syntax for specifying graph patterns is shared

with the new SQL Standard SQL/PGQ for
graph queries

openCypher 9 GQL
Standard

Neo4j’s Cypher®
language

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 3

https://www.iso.org/standard/76120.html


Data Model of Neo4j: Property Graphs
[https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/]

Property Graphs

consist of

I nodes,
I edges,
I labels,
I properties.
I types.

Neo4j Terminology

I Edges are called
relationships

Example

p1
name= “Tom Hanks”
birthyear= 1956

{:Person,:Acteur}

p2
name= “Robert Zemeckis”
birthyear= 1951

{:Person}

m title= “Forrest Gump”
released= 1994

{:Movie}

{:ACTED_IN}

roles= [“Forrest”]

{:
DI

RE
CT

ED
}

I Every relationship has exactly one label, which is its type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 4



Data Model of Neo4j: Property Graphs
[https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/]

Property Graphs

consist of
I nodes,

I edges,
I labels,
I properties.
I types.

Neo4j Terminology

I Edges are called
relationships

Example

p1
name= “Tom Hanks”
birthyear= 1956

{:Person,:Acteur}

p2
name= “Robert Zemeckis”
birthyear= 1951

{:Person}

m title= “Forrest Gump”
released= 1994

{:Movie}

{:ACTED_IN}

roles= [“Forrest”]

{:
DI

RE
CT

ED
}

I Every relationship has exactly one label, which is its type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 4



Data Model of Neo4j: Property Graphs
[https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/]

Property Graphs

consist of
I nodes,
I edges,

I labels,
I properties.
I types.

Neo4j Terminology

I Edges are called
relationships

Example

p1
name= “Tom Hanks”
birthyear= 1956

{:Person,:Acteur}

p2
name= “Robert Zemeckis”
birthyear= 1951

{:Person}

m title= “Forrest Gump”
released= 1994

{:Movie}

{:ACTED_IN}

roles= [“Forrest”]

{:
DI

RE
CT

ED
}

I Every relationship has exactly one label, which is its type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 4



Data Model of Neo4j: Property Graphs
[https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/]

Property Graphs

consist of
I nodes,
I edges,
I labels,

I properties.
I types.

Neo4j Terminology

I Edges are called
relationships

Example

p1
name= “Tom Hanks”
birthyear= 1956

{:Person,:Acteur}

p2
name= “Robert Zemeckis”
birthyear= 1951

{:Person}

m title= “Forrest Gump”
released= 1994

{:Movie}

{:ACTED_IN}

roles= [“Forrest”]

{:
DI

RE
CT

ED
}

I Every relationship has exactly one label, which is its type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 4



Data Model of Neo4j: Property Graphs
[https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/]

Property Graphs

consist of
I nodes,
I edges,
I labels,
I properties.

I types.

Neo4j Terminology

I Edges are called
relationships

Example

p1
name= “Tom Hanks”
birthyear= 1956

{:Person,:Acteur}

p2
name= “Robert Zemeckis”
birthyear= 1951

{:Person}

m title= “Forrest Gump”
released= 1994

{:Movie}

{:ACTED_IN}

roles= [“Forrest”]

{:
DI

RE
CT

ED
}

I Every relationship has exactly one label, which is its type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 4



Data Model of Neo4j: Property Graphs
[https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/]

Property Graphs

consist of
I nodes,
I edges relationships,
I labels,
I properties.

I types.

Neo4j Terminology

I Edges are called
relationships

Example

p1
name= “Tom Hanks”
birthyear= 1956

{:Person,:Acteur}

p2
name= “Robert Zemeckis”
birthyear= 1951

{:Person}

m title= “Forrest Gump”
released= 1994

{:Movie}

{:ACTED_IN}

roles= [“Forrest”]

{:
DI

RE
CT

ED
}

I Every relationship has exactly one label, which is its type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 4



Data Model of Neo4j: Property Graphs
[https://neo4j.com/docs/getting-started/appendix/graphdb-concepts/]

Property Graphs

consist of
I nodes,
I edges relationships,
I labels,
I properties,
I types.

Neo4j Terminology

I Edges are called
relationships

Example

p1
name= “Tom Hanks”
birthyear= 1956

{:Person,:Acteur}

p2
name= “Robert Zemeckis”
birthyear= 1951

{:Person}

m title= “Forrest Gump”
released= 1994

{:Movie}

{:ACTED_IN}

roles= [“Forrest”]

{:
DI

RE
CT

ED
}

I Every relationship has exactly one label, which is its type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 4



A Simple Example

Example
“The name of all persons and the release year of
movies they like”
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Ingredients

I A pattern consisting of…
I …vertex patterns (p:Person), (m:Movie)
I …an edge pattern -[:LIKES]->

I A RETURN clause

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 5



A Simple Example

Example
“The name of all persons and the release year of
movies they like”
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Ingredients

I A pattern consisting of…
I …vertex patterns (p:Person), (m:Movie)
I …an edge pattern -[:LIKES]->

I A RETURN clause

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 5



Pattern Syntax – Vertex Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Vertex Pattern

Pattern Description

() unidentified/anonymous vertex
(matrix) vertex identified by/bound to variable

matrix

(:Movie) unidentified vertex with label Movie
(:Movie|(Series & !Cancelled)) vertex with complex label expression
(matrix:Movie {title: "The Matrix"}) property title has value “The Matrix”
(matrix:Movie {title: "The Matrix", released: 1997}) …and property released equals the integer

1997
(matrix:Movie WHERE matrix.released >= 1997) more verbose syntax

In a Neo4j database each node can have an arbitrary number of labels

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 6



Pattern Syntax – Relationship Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Relationship (Edge) Pattern

Pattern Description

-- unidentified edge, matches edges in either direction
--> unidentified edge, matches in forward direction
<-- unidentified edge, matches in reverse direction
-[:LIKES]-> unidentified edge with type LIKES
-[role]-> forward edge bound to variable role
-[role:ACTED_IN]-> forward edge bound to variable role with type

ACTED_IN

-[role:ACTED_IN WHERE role.name = "Neo"]-> …and property name has value “Neo”

In a Neo4j database each relationship has exactly one type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 7



Pattern Syntax – Relationship Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Relationship (Edge) Pattern

Pattern Description

-- unidentified edge, matches edges in either direction
--> unidentified edge, matches in forward direction
<-- unidentified edge, matches in reverse direction
-[:LIKES]-> unidentified edge with type LIKES
-[role]-> forward edge bound to variable role
-[role:ACTED_IN]-> forward edge bound to variable role with type

ACTED_IN

-[role:ACTED_IN WHERE role.name = "Neo"]-> …and property name has value “Neo”

In a Neo4j database each relationship has exactly one type

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 7



Pattern Syntax – Path Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Fixed-length Path Patterns

I String of alternating vertex and edge pattern
I Starting and ending with a vertex pattern
I (a)-->(b)<--(c)--(d)-->(a)-->(e)

a b c d e

Example

(p:Actor WHERE p.name = "Keanu Reeves")
-[role:ACTED_IN WHERE role.name = "Neo"]->

(m:Movie WHERE m.title = "The Matrix")

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 8



Pattern Syntax – Path Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Fixed-length Path Patterns

I String of alternating vertex and edge pattern
I Starting and ending with a vertex pattern
I (a)-->(b)<--(c)--(d)-->(a)-->(e)

a b c d e

Example

(p:Actor WHERE p.name = "Keanu Reeves")
-[role:ACTED_IN WHERE role.name = "Neo"]->

(m:Movie WHERE m.title = "The Matrix")

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 8



Pattern Syntax – Variable-length Path Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns

I Path of varying/unknown length can be matched
by adding a quantifier {n,m}

I n is a lower, and m a upper bound for
the number of repetitions

I (a)-->(b)(()<--()--()-->()){1,2}()-->(e) is equivalent to the “union of”
I (a)-->(b)<--()--()-->()-->(e) and
I (a)-->(b)<--()--()-->()<--()--()-->()-->(e)

I Both upper and lower bound are optional:
I At most two repetitions: (p1)((:Post)-[:REPLY_TO]->(:Post)){,2}(p2)
I At least three repetitions: (p1)((:Post)-[:REPLY_TO]->(:Post)){3,}(p2)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 9



Pattern Syntax – Variable-length Path Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns

I Path of varying/unknown length can be matched
by adding a quantifier {n,m}

I n is a lower, and m a upper bound for
the number of repetitions

I (a)-->(b)(()<--()--()-->()){1,2}()-->(e) is equivalent to the “union of”
I (a)-->(b)<--()--()-->()-->(e) and
I (a)-->(b)<--()--()-->()<--()--()-->()-->(e)

I Both upper and lower bound are optional:
I At most two repetitions: (p1)((:Post)-[:REPLY_TO]->(:Post)){,2}(p2)
I At least three repetitions: (p1)((:Post)-[:REPLY_TO]->(:Post)){3,}(p2)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 9



Pattern Syntax – Variable-length Path Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns

I Path of varying/unknown length can be matched
by adding a quantifier {n,m}

I n is a lower, and m a upper bound for
the number of repetitions

I (a)-->(b)(()<--()--()-->()){1,2}()-->(e) is equivalent to the “union of”
I (a)-->(b)<--()--()-->()-->(e) and
I (a)-->(b)<--()--()-->()<--()--()-->()-->(e)

I Both upper and lower bound are optional:
I At most two repetitions: (p1)((:Post)-[:REPLY_TO]->(:Post)){,2}(p2)
I At least three repetitions: (p1)((:Post)-[:REPLY_TO]->(:Post)){3,}(p2)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 9



Pattern Syntax – Variable-length Path Patterns Cont’d
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns – Shorthands

I Shorthands for common cases:
I Zero or more repetitions (Kleene star): (p1)((:Post)-[:REPLY_TO]->(:Post))*(p2)
I At least one repetition: (p1)((:Post)-[:REPLY_TO]->(:Post))+(p2)

I Shorthand for repeating a single edge pattern:
I (p1:Post)-[:REPLY_TO]->*(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())*(p2:Post)
I (p1:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())+(p2:Post)
I (p1:Post)-[:REPLY_TO]->{2,4}(p2:Post) instead of

(p1:Post)(()-[:REPLY_TO]->()){2,4}(p2:Post)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 10



Pattern Syntax – Variable-length Path Patterns Cont’d
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns – Shorthands

I Shorthands for common cases:
I Zero or more repetitions (Kleene star): (p1)((:Post)-[:REPLY_TO]->(:Post))*(p2)
I At least one repetition: (p1)((:Post)-[:REPLY_TO]->(:Post))+(p2)

I Shorthand for repeating a single edge pattern:
I (p1:Post)-[:REPLY_TO]->*(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())*(p2:Post)

I (p1:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())+(p2:Post)
I (p1:Post)-[:REPLY_TO]->{2,4}(p2:Post) instead of

(p1:Post)(()-[:REPLY_TO]->()){2,4}(p2:Post)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 10



Pattern Syntax – Variable-length Path Patterns Cont’d
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns – Shorthands

I Shorthands for common cases:
I Zero or more repetitions (Kleene star): (p1)((:Post)-[:REPLY_TO]->(:Post))*(p2)
I At least one repetition: (p1)((:Post)-[:REPLY_TO]->(:Post))+(p2)

I Shorthand for repeating a single edge pattern:
I (p1:Post)-[:REPLY_TO]->*(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())*(p2:Post)
I (p1:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())+(p2:Post)
I (p1:Post)-[:REPLY_TO]->{2,4}(p2:Post) instead of

(p1:Post)(()-[:REPLY_TO]->()){2,4}(p2:Post)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 10



Pattern Syntax – Variable-length Path Patterns Cont’d
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns – Shorthands

I Shorthands for common cases:
I Zero or more repetitions (Kleene star): (p1)((:Post)-[:REPLY_TO]->(:Post))*(p2)
I At least one repetition: (p1)((:Post)-[:REPLY_TO]->(:Post))+(p2)

I Shorthand for repeating a single edge pattern:
I (p1:Post)-[:REPLY_TO]->*(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())*(p2:Post)
I (p1:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())+(p2:Post)
I (p1:Post)-[:REPLY_TO]->{2,4}(p2:Post) instead of

(p1:Post)(()-[:REPLY_TO]->()){2,4}(p2:Post)

Question?
Are the following patterns equivalent?

I (p1:Post)-[:REPLY_TO]->+(p2:Post)

I (p1)((:Post)-[:REPLY_TO]->(:Post))+(p2)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 10



Pattern Syntax – Variable-length Path Patterns Cont’d
[https://neo4j.com/docs/cypher-manual/current/patterns/variable-length-patterns/]

Quantified Path Patterns – Shorthands

I Shorthands for common cases:
I Zero or more repetitions (Kleene star): (p1)((:Post)-[:REPLY_TO]->(:Post))*(p2)
I At least one repetition: (p1)((:Post)-[:REPLY_TO]->(:Post))+(p2)

I Shorthand for repeating a single edge pattern:
I (p1:Post)-[:REPLY_TO]->*(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())*(p2:Post)
I (p1:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post)(()-[:REPLY_TO]->())+(p2:Post)
I (p1:Post)-[:REPLY_TO]->{2,4}(p2:Post) instead of

(p1:Post)(()-[:REPLY_TO]->()){2,4}(p2:Post)

Old Cypher Syntax
I Between two and four repetitions: (p1:Post)-[:REPLY_TO*2..4]->(p2:Post)

I equivalent to (p1:Post)-[:REPLY_TO]->{2,4}(p2:Post)

I Can only be used with single edge patterns
I Does not conform to GQL

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 10



Pattern Syntax – Graph Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Graph Patterns

I One or multiple path pattern
I separated by commata

a b c d e

Example

(a)-->(b)<--(c)--(d)-->(a)-->(e), (e)-->(b)-->(d), (a)-->(a)

“Warning”

I Path patterns should have at least one shared variable
I Without shared variable the graph pattern is disconnected

I Results in a cross-product of the results for connected sub patterns
I Quadratic blow up in result size and computational complexity

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 11



Pattern Syntax – Graph Patterns
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Graph Patterns

I One or multiple path pattern
I separated by commata

a b c d e

Example

(a)-->(b)<--(c)--(d)-->(a)-->(e), (e)-->(b)-->(d), (a)-->(a)

“Warning”

I Path patterns should have at least one shared variable
I Without shared variable the graph pattern is disconnected

I Results in a cross-product of the results for connected sub patterns
I Quadratic blow up in result size and computational complexity

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 11



Pattern Semantics

Semantics (of Neo4j)

I Homomorphism-like semantics
I but every edge can only be matched once
I GQL: Different edges matching semantics
I openCypher: trail semantics

Example
How many matches does the following graph
pattern have?

(p1:Person)
-[:LIKES]->
(m:Movie {title: "The Godfather}),

(p2:Person)-[:LIKES]->(m)

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 12



Pattern Semantics

Semantics (of Neo4j)

I Homomorphism-like semantics
I but every edge can only be matched once
I GQL: Different edges matching semantics
I openCypher: trail semantics

Example
How many matches does the following graph
pattern have?

(p1:Person)
-[:LIKES]->
(m:Movie {title: "The Godfather}),

(p2:Person)-[:LIKES]->(m)

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 12



Pattern Syntax
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Which of these strings are patterns?

A: (a,b:Movie)-[:SHOWN_IN]->(e),(f)

B: (a:Movie)-[:SHOWN_IN]->*()

C: (:Movie)-[:SHOWN_IN]->

D: ()<--(a:Movie)

Which patterns specify a loop?

A: (a:Movie WHERE a.name = "Matrix")-->(a)

B: (a:Movie WHERE a.name = "Matrix")-->(b:Movie WHERE b.name = "Matrix")

C: (a:Movie WHERE a.name = "Matrix")-->(a:Movie WHERE a.name = "Matrix")

D: (a:Movie WHERE name = "Matrix")-->({name: "Matrix"})

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 13



Pattern Syntax
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Which of these strings are patterns?

A: (a,b:Movie)-[:SHOWN_IN]->(e),(f)

B: (a:Movie)-[:SHOWN_IN]->*()

C: (:Movie)-[:SHOWN_IN]->

D: ()<--(a:Movie)

Which patterns specify a loop?

A: (a:Movie WHERE a.name = "Matrix")-->(a)

B: (a:Movie WHERE a.name = "Matrix")-->(b:Movie WHERE b.name = "Matrix")

C: (a:Movie WHERE a.name = "Matrix")-->(a:Movie WHERE a.name = "Matrix")

D: (a:Movie WHERE name = "Matrix")-->({name: "Matrix"})

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 13



Pattern Syntax
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Which of these strings are patterns?

A: (a,b:Movie)-[:SHOWN_IN]->(e),(f)

B: (a:Movie)-[:SHOWN_IN]->*()

C: (:Movie)-[:SHOWN_IN]->

D: ()<--(a:Movie)

Which patterns specify a loop?

A: (a:Movie WHERE a.name = "Matrix")-->(a)

B: (a:Movie WHERE a.name = "Matrix")-->(b:Movie WHERE b.name = "Matrix")

C: (a:Movie WHERE a.name = "Matrix")-->(a:Movie WHERE a.name = "Matrix")

D: (a:Movie WHERE name = "Matrix")-->({name: "Matrix"})

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 13



Pattern Syntax
[https://neo4j.com/docs/cypher-manual/current/patterns/]

Which of these strings are patterns?

A: (a,b:Movie)-[:SHOWN_IN]->(e),(f)

B: (a:Movie)-[:SHOWN_IN]->*()

C: (:Movie)-[:SHOWN_IN]->

D: ()<--(a:Movie)

Which patterns specify a loop?

A: (a:Movie WHERE a.name = "Matrix")-->(a)

B: (a:Movie WHERE a.name = "Matrix")-->(b:Movie WHERE b.name = "Matrix")

C: (a:Movie WHERE a.name = "Matrix")-->(a:Movie WHERE a.name = "Matrix")

D: (a:Movie WHERE name = "Matrix")-->({name: "Matrix"})

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 13



Matching, Filtering, Result Definition



Matching

MATCH clause

I Primary way of querying Neo4j
I Takes a subgraph pattern
I and binds variables to matches

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Question
How many answers does the query return?

Result p.name m.released
Lucy 1993
Lucy 1993
Alex 1993
Alex 1993
Alex 1972

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 14



Matching

MATCH clause

I Primary way of querying Neo4j
I Takes a subgraph pattern
I and binds variables to matches

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Question
How many answers does the query return?

Result p.name m.released
Lucy 1993
Lucy 1993
Alex 1993
Alex 1993
Alex 1972

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 14



Matching

MATCH clause

I Primary way of querying Neo4j
I Takes a subgraph pattern
I and binds variables to matches

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Question
How many answers does the query return?

Result p.name m.released
Lucy 1993
Lucy 1993
Alex 1993
Alex 1993
Alex 1972

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 14



Matching

Multiple MATCH clauses

I A query can have multiple MATCH clauses
I Variable bindings are “passed” to the next

MATCH

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Question
How many answers does the query return?

9 answers

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

I Every edge can only be matched once
per MATCH clause

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15



Matching

Multiple MATCH clauses

I A query can have multiple MATCH clauses
I Variable bindings are “passed” to the next

MATCH

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Question
How many answers does the query return?

9 answers

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

I Every edge can only be matched once
per MATCH clause

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15



Matching

Multiple MATCH clauses

I A query can have multiple MATCH clauses
I Variable bindings are “passed” to the next

MATCH

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Question
How many answers does the query return?
9 answers

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

I Every edge can only be matched once
per MATCH clause

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15



Matching

Multiple MATCH clauses

I A query can have multiple MATCH clauses
I Variable bindings are “passed” to the next

MATCH

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Question
How many answers does the query return?
9 answers

1 name= “Lucy”
born= 1982

{:Person}

3 title= “True Romance”
released= 1993

{:Movie}

4 title= “Jurassic Park”
released= 1993

{:Movie}

5 title= “The Godfather”
released= 1972

{:Movie}

2 name= “Alex”
born= 1984
{:Person}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

{:LIKES}

I Every edge can only be matched once
per MATCH clause

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15



Optional Match
[https://neo4j.com/docs/cypher-manual/current/clauses/optional-match/]

Optional Match clause

I Matches patterns, just like MATCH

I Matches the complete pattern or not
I If no matches are found,

OPTIONAL MATCH will use nulls as bindings
I Like relational left outer join

Example

MATCH (a:Movie)
OPTIONAL MATCH (a)<-[:WROTE]-(x)
RETURN a.title, x.name

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 16



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

WHERE clause
I After an (OPTIONAL) MATCH, it adds constraints to the

(optional) match
I After a WITH clause, it just filters the result

Example
MATCH (n)
WHERE n.name = "Peter"

OR (n.age < 30 AND n.name = "Tobias")
OR NOT (n.name = "Tobias" OR n.name="Peter")

RETURN n

n
Node[0]{name:”Andres”,age:36,belt:”white”}
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 17



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

WHERE clause
I After an (OPTIONAL) MATCH, it adds constraints to the

(optional) match
I After a WITH clause, it just filters the result

Example
MATCH (n)
WHERE n.name = "Peter"

OR (n.age < 30 AND n.name = "Tobias")
OR NOT (n.name = "Tobias" OR n.name="Peter")

RETURN n

n
Node[0]{name:”Andres”,age:36,belt:”white”}
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 17



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on node label
MATCH (n) WHERE n:Swedish RETURN n

n
Node[0]{name:”Andres”,age:36,belt:”white”}

I Filter on a node property
MATCH (n) WHERE n.age < 30 RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}

I Filter on a relationships
MATCH (n)-[k]->(f) WHERE k:KNOWS AND k.since < 2000 RETURN f

f
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 18



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on node label
MATCH (n) WHERE n:Swedish RETURN n

n
Node[0]{name:”Andres”,age:36,belt:”white”}

I Filter on a node property
MATCH (n) WHERE n.age < 30 RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}

I Filter on a relationships
MATCH (n)-[k]->(f) WHERE k:KNOWS AND k.since < 2000 RETURN f

f
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 18



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on node label
MATCH (n) WHERE n:Swedish RETURN n

n
Node[0]{name:”Andres”,age:36,belt:”white”}

I Filter on a node property
MATCH (n) WHERE n.age < 30 RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}

I Filter on a relationships
MATCH (n)-[k]->(f) WHERE k:KNOWS AND k.since < 2000 RETURN f

f
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 18



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on lists
MATCH (n) WHERE n.name IN ["Peter", "Tobias"] RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

I Filter on string …
I properties: MATCH (n) WHERE n.name = 'Peter' RETURN n
I prefixes: MATCH (n) WHERE n.name STARTS WITH 'Pet' RETURN n
I suffixes: MATCH (n) WHERE n.name ENDS WITH 'ter' RETURN n
I infixes: MATCH (n) WHERE n.name CONTAINS 'ete' RETURN n
I regex: MATCH (n) WHERE n.name =~ 'P[et]+r?' RETURN n

n
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 19



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on lists
MATCH (n) WHERE n.name IN ["Peter", "Tobias"] RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

I Filter on string …
I properties: MATCH (n) WHERE n.name = 'Peter' RETURN n
I prefixes: MATCH (n) WHERE n.name STARTS WITH 'Pet' RETURN n
I suffixes: MATCH (n) WHERE n.name ENDS WITH 'ter' RETURN n
I infixes: MATCH (n) WHERE n.name CONTAINS 'ete' RETURN n
I regex: MATCH (n) WHERE n.name =~ 'P[et]+r?' RETURN n

n
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 19



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on property existence
MATCH (n) WHERE n.belt IS NOT NULL RETURN n
(default value for missing properties is NULL)

n
Node[0]{name:”Andres”,age:36,belt:”white”}

I Filter on property absence/non-existence
MATCH (n) WHERE n.belt IS NULL RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 20



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on property existence
MATCH (n) WHERE n.belt IS NOT NULL RETURN n
(default value for missing properties is NULL)

n
Node[0]{name:”Andres”,age:36,belt:”white”}

I Filter on property absence/non-existence
MATCH (n) WHERE n.belt IS NULL RETURN n

n
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 20



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on patterns
MATCH (t { name: 'Tobias' }), (others)
WHERE others.age > 30 AND (tobias)<--(others)
RETURN others

others
Node[0]{name:”Andres”,age:36,belt:”white”}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 21



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on patterns
MATCH (t { name: 'Tobias' }), (others)
WHERE others.age > 30 AND (tobias)<--(others)
RETURN others

others
Node[0]{name:”Andres”,age:36,belt:”white”}

I …with negation
MATCH (persons), (p {name: 'Peter '})
WHERE NOT (persons)-->(p)
RETURN persons

persons
Node[1]{address:”Sweden/Malmo”,name:”Tobias”,age:25}
Node[2]{email:”peter_n@example.com”,name:”Peter”,age:34}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 21



Filtering
[https://neo4j.com/docs/cypher-manual/current/clauses/where/]

1

name= “Andres”
age= 36
belt= “white”

{:Swedish}

2

name= “Peter”
age= 34
email= “peter_n@example.com”

3

name= “Tobias”
age= 25
address= “Sweden/Malmo”

{:KNOWS}

since= 2012

{:KNOWS}

since= 1999

I Filter on patterns
MATCH (t { name: 'Tobias' }), (others)
WHERE others.age > 30 AND (tobias)<--(others)
RETURN others

others
Node[0]{name:”Andres”,age:36,belt:”white”}

I …on existence
MATCH (person) WHERE EXISTS((person)-->())
RETURN person

person
Node[0]{name:”Andres”,age:36,belt:”white”}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 21



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

RETURN clause

I Defines what to include in the query result set
I Comparable with relational projection
I Only once per query
I Allows to return nodes, edges, properties, or any expressions
I Column can be rename using AS <new name>

Example
MATCH (n)
RETURN n, "node " + id(n) + " is " +

CASE WHEN n.title IS NOT NULL THEN "a Movie"
WHEN EXISTS(n.name) THEN "a Person"
ELSE "something unknown"

END AS about

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 22



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Return nodes
MATCH (n { name: "B" }) RETURN n

n
Node[1]{name:”B”}

I Return relationships
MATCH (n { name: "A" })-[r:KNOWS]->(c) RETURN r

r
:KNOWS[0]{}

I Return properties
MATCH (n { name: "A" }) RETURN n.name

n.name
“A”

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 23



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Return nodes
MATCH (n { name: "B" }) RETURN n

n
Node[1]{name:”B”}

I Return relationships
MATCH (n { name: "A" })-[r:KNOWS]->(c) RETURN r

r
:KNOWS[0]{}

I Return properties
MATCH (n { name: "A" }) RETURN n.name

n.name
“A”

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 23



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Return nodes
MATCH (n { name: "B" }) RETURN n

n
Node[1]{name:”B”}

I Return relationships
MATCH (n { name: "A" })-[r:KNOWS]->(c) RETURN r

r
:KNOWS[0]{}

I Return properties
MATCH (n { name: "A" }) RETURN n.name

n.name
“A”

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 23



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Column alias
MATCH (a { name: "A" })
RETURN a.age AS SomethingTotallyDifferent

SomethingTotallyDifferent
55

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

I Return all bounded elements
MATCH p=(a { name: "A" })-[r]->(b) RETURN *

a b
p

r

Node[0]{name:”A”,happy:”Yes!”,age:55} Node[1]{name:”B”} [Node[0]{name:”A”,happy:”Yes!”,age:
55},:BLOCKS[1]{},Node[1]{name:”B”}]

:BLOCKS[1]{}

Node[0]{name:”A”,happy:”Yes!”,age: 55} Node[1]{name:”B”} [Node[0]{name:”A”,happy:”Yes!”,age:
55},:KNOWS[0]{},Node[1]{name:”B”}]

:KNOWS[0]{}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 24



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Column alias
MATCH (a { name: "A" })
RETURN a.age AS SomethingTotallyDifferent

SomethingTotallyDifferent
55

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

I Return all bounded elements
MATCH p=(a { name: "A" })-[r]->(b) RETURN *

a b
p

r

Node[0]{name:”A”,happy:”Yes!”,age:55} Node[1]{name:”B”} [Node[0]{name:”A”,happy:”Yes!”,age:
55},:BLOCKS[1]{},Node[1]{name:”B”}]

:BLOCKS[1]{}

Node[0]{name:”A”,happy:”Yes!”,age: 55} Node[1]{name:”B”} [Node[0]{name:”A”,happy:”Yes!”,age:
55},:KNOWS[0]{},Node[1]{name:”B”}]

:KNOWS[0]{}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 24



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Returning optional properties
MATCH (n) RETURN n.age

n.age
55
null

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

I Other expressions
MATCH (a { name: "A" }) RETURN a.age > 30, "I'm a literal", (a)-->()

a.age > 30 “I’m a literal”
(a)-->()

true “I’m a literal” [[Node[0]{name:”A”,happy:”Yes!”,age:55},:BLOCKS[1]{},Node[1]{name:”B”}],
[Node[0]{name:”A”,happy:”Yes!”,age:55},:KNOWS[0]{},Node[1]{name:”B”}]]

I Unique results
MATCH (a { name: "A" })-->(b) RETURN DISTINCT b

b
Node[1]{name:”B”}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 25



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Returning optional properties
MATCH (n) RETURN n.age

n.age
55
null

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

I Other expressions
MATCH (a { name: "A" }) RETURN a.age > 30, "I'm a literal", (a)-->()

a.age > 30 “I’m a literal”
(a)-->()

true “I’m a literal” [[Node[0]{name:”A”,happy:”Yes!”,age:55},:BLOCKS[1]{},Node[1]{name:”B”}],
[Node[0]{name:”A”,happy:”Yes!”,age:55},:KNOWS[0]{},Node[1]{name:”B”}]]

I Unique results
MATCH (a { name: "A" })-->(b) RETURN DISTINCT b

b
Node[1]{name:”B”}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 25



Projection
[https://neo4j.com/docs/cypher-manual/current/clauses/return/]

I Returning optional properties
MATCH (n) RETURN n.age

n.age
55
null

0
name= “A”
happy= “Yes!”
age= 55

1 name= “B”

{:BLOCKS}{:KNOWS}

I Other expressions
MATCH (a { name: "A" }) RETURN a.age > 30, "I'm a literal", (a)-->()

a.age > 30 “I’m a literal”
(a)-->()

true “I’m a literal” [[Node[0]{name:”A”,happy:”Yes!”,age:55},:BLOCKS[1]{},Node[1]{name:”B”}],
[Node[0]{name:”A”,happy:”Yes!”,age:55},:KNOWS[0]{},Node[1]{name:”B”}]]

I Unique results
MATCH (a { name: "A" })-->(b) RETURN DISTINCT b

b
Node[1]{name:”B”}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 25



Result Modification – Sorting
[https://neo4j.com/docs/cypher-manual/current/clauses/order-by/]

ORDER BY clause

I Sub-clause following RETURN or WITH

I Specifies how the output should be sorted
I Can only sort on properties,

not nodes or relationships
I null will come last in ascending order (ASC),

and first in descending order (DESC)

Example (Order by property)

MATCH (n) RETURN n ORDER BY n.name

n
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}
Node[2]{name:”C”,age:32,length:185}

Example (Order by multiple property)

MATCH (n) RETURN n ORDER BY n.age, n.name

n
Node[2]{name:”C”,age:32,length:185}
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}

Example (Order nodes in descending order)

MATCH (n) RETURN n ORDER BY n.name DESC

n
Node[2]{name:”C”,age:32,length:185}
Node[1]{name:”B”,age:34}
Node[0]{name:”A”,age:34,length:170}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 26



Result Modification – Sorting
[https://neo4j.com/docs/cypher-manual/current/clauses/order-by/]

ORDER BY clause

I Sub-clause following RETURN or WITH

I Specifies how the output should be sorted
I Can only sort on properties,

not nodes or relationships
I null will come last in ascending order (ASC),

and first in descending order (DESC)

Example (Order by property)

MATCH (n) RETURN n ORDER BY n.name

n
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}
Node[2]{name:”C”,age:32,length:185}

Example (Order by multiple property)

MATCH (n) RETURN n ORDER BY n.age, n.name

n
Node[2]{name:”C”,age:32,length:185}
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}

Example (Order nodes in descending order)

MATCH (n) RETURN n ORDER BY n.name DESC

n
Node[2]{name:”C”,age:32,length:185}
Node[1]{name:”B”,age:34}
Node[0]{name:”A”,age:34,length:170}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 26



Result Modification – Sorting
[https://neo4j.com/docs/cypher-manual/current/clauses/order-by/]

ORDER BY clause

I Sub-clause following RETURN or WITH

I Specifies how the output should be sorted
I Can only sort on properties,

not nodes or relationships
I null will come last in ascending order (ASC),

and first in descending order (DESC)

Example (Order by property)

MATCH (n) RETURN n ORDER BY n.name

n
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}
Node[2]{name:”C”,age:32,length:185}

Example (Order by multiple property)

MATCH (n) RETURN n ORDER BY n.age, n.name

n
Node[2]{name:”C”,age:32,length:185}
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}

Example (Order nodes in descending order)

MATCH (n) RETURN n ORDER BY n.name DESC

n
Node[2]{name:”C”,age:32,length:185}
Node[1]{name:”B”,age:34}
Node[0]{name:”A”,age:34,length:170}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 26



Result Modification – Sorting
[https://neo4j.com/docs/cypher-manual/current/clauses/order-by/]

ORDER BY clause

I Sub-clause following RETURN or WITH

I Specifies how the output should be sorted
I Can only sort on properties,

not nodes or relationships
I null will come last in ascending order (ASC),

and first in descending order (DESC)

Example (Order by property)

MATCH (n) RETURN n ORDER BY n.name

n
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}
Node[2]{name:”C”,age:32,length:185}

Example (Order by multiple property)

MATCH (n) RETURN n ORDER BY n.age, n.name

n
Node[2]{name:”C”,age:32,length:185}
Node[0]{name:”A”,age:34,length:170}
Node[1]{name:”B”,age:34}

Example (Order nodes in descending order)

MATCH (n) RETURN n ORDER BY n.name DESC

n
Node[2]{name:”C”,age:32,length:185}
Node[1]{name:”B”,age:34}
Node[0]{name:”A”,age:34,length:170}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 26



Result Modification – LIMIT clause
[https://neo4j.com/docs/cypher-manual/current/clauses/limit/]

LIMIT clause

I Constrains the number of rows in the output
I Accepts any expression that evaluates to a positive integer
I Expression cannot refer to nodes or relationships
I Return first from the top

MATCH (n) RETURN n ORDER BY n.name LIMIT 3

I Return first from expression
MATCH (n) RETURN n ORDER BY n.name LIMIT toInt(3 * rand()) + 1

1 name= “A”

3 name= “C” 4 name= “D” 5 name= “E”2 name= “B”

{:KNOWS} {:KNOWS} {:KNOWS} {:KNOWS}

n
Node[0]{name:”A”}
Node[0]{name:”B”}
Node[0]{name:”C”}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 27



Result Modification – LIMIT clause
[https://neo4j.com/docs/cypher-manual/current/clauses/limit/]

LIMIT clause

I Constrains the number of rows in the output
I Accepts any expression that evaluates to a positive integer
I Expression cannot refer to nodes or relationships
I Return first from the top

MATCH (n) RETURN n ORDER BY n.name LIMIT 3

I Return first from expression
MATCH (n) RETURN n ORDER BY n.name LIMIT toInt(3 * rand()) + 1

1 name= “A”

3 name= “C” 4 name= “D” 5 name= “E”2 name= “B”

{:KNOWS} {:KNOWS} {:KNOWS} {:KNOWS}

n
Node[0]{name:”A”}
Node[0]{name:”B”}
Node[0]{name:”C”}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 27



Result Modification – OFFSET clause
[https://neo4j.com/docs/cypher-manual/current/clauses/skip/]

OFFSET clause

I Defines from which row to start including the rows in the output
I Result set will get trimmed from the top
I Same rules as for LIMIT
I Skip first three

MATCH (n) RETURN n ORDER BY n.name OFFSET 3

I SKIP is an alias supported by Neo4j

1 name= “A”

3 name= “C” 4 name= “D” 5 name= “E”2 name= “B”

{:KNOWS} {:KNOWS} {:KNOWS} {:KNOWS}
n
Node[0]{name:”D”}
Node[0]{name:”E”}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 28



Aggregation



Aggregation
[https://neo4j.com/docs/cypher-manual/current/functions/aggregating/]

Group by/Aggregation

I Implicit group by (that is, there is no keyword!)
I Expressions without an aggregation function will be the group keys
I Expressions with an aggregation function will produce aggregates

I DISTINCT within the aggregation function removes duplicates in a group before the aggregation
I ALL aggregates duplicates (default)

Example
MATCH (p:Person {name: "Ann"})-->(friend:Person)-->(fof:Person)
RETURN p.name, count(DISTINCT fof), count(ALL fof), count(fof)

1 name= “Ann”

2 name= “Bob”

3 name= “Tim”

5 name= “Jef”

4 name= “Lee”

6 name= “Cyn”

Result
p.name DISTINCT

count
ALL
count count

Ann 3 4 4

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 29



Aggregation
[https://neo4j.com/docs/cypher-manual/current/functions/aggregating/]

Group by/Aggregation

I Implicit group by (that is, there is no keyword!)
I Expressions without an aggregation function will be the group keys
I Expressions with an aggregation function will produce aggregates

I DISTINCT within the aggregation function removes duplicates in a group before the aggregation
I ALL aggregates duplicates (default)

Example
MATCH (p:Person {name: "Ann"})-->(friend:Person)-->(fof:Person)
RETURN p.name, count(DISTINCT fof), count(ALL fof), count(fof)

1 name= “Ann”

2 name= “Bob”

3 name= “Tim”

5 name= “Jef”

4 name= “Lee”

6 name= “Cyn”

Result
p.name DISTINCT

count
ALL
count count

Ann 3 4 4

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 29



Aggregation
[https://neo4j.com/docs/cypher-manual/current/functions/aggregating/]

Group by/Aggregation

I Implicit group by (that is, there is no keyword!)
I Expressions without an aggregation function will be the group keys
I Expressions with an aggregation function will produce aggregates

I DISTINCT within the aggregation function removes duplicates in a group before the aggregation
I ALL aggregates duplicates (default)

Example
MATCH (p:Person {name: "Ann"})-->(friend:Person)-->(fof:Person)
RETURN p.name, count(DISTINCT fof), count(ALL fof), count(fof)

1 name= “Ann”

2 name= “Bob”

3 name= “Tim”

5 name= “Jef”

4 name= “Lee”

6 name= “Cyn”

Result
p.name DISTINCT

count
ALL
count count

Ann 3 4 4

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 29



Aggregation
[https://neo4j.com/docs/cypher-manual/current/functions/aggregating/]

Some Common Aggregation Functions
Function Description
avg() Returns the average of a numeric column.
collect() Returns a list containing all collected values.
count() Returns the number of rows.
max() Returns the highest value in a numeric column.
min() Returns the lowest value in a numeric column.
percentileCont() Returns the percentile of a given value over a group using linear

interpolation.
percentileDisc() Returns the nearest value to a given percentile over a group using

a rounding method.
stDev() Returns the standard deviation for a given value over a group for a

sample of a population.
stDevP() Returns the standard deviation for a given value over a group for

an entire population.
sum() Returns the sum of a numeric column.

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 30



Composition



Query Composition
[https://neo4j.com/docs/cypher-manual/current/clauses/with/]

WITH clause

I Like RETURN followed by a process pipe
I Chains subqueries together, piping the results from one to be used as starting points in the next
I Like RETURN, WITH defines – including aggregation – the output before it is passed on

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 31



Query Composition
[https://neo4j.com/docs/cypher-manual/current/clauses/with/]

WITH clause

I Like RETURN followed by a process pipe
I Chains subqueries together, piping the results from one to be used as starting points in the next
I Like RETURN, WITH defines – including aggregation – the output before it is passed on

Example (Friends of five best friends)

Limit search space based on order of properties or aggregates
MATCH (p)-[f:FRIENDS]->(p2)
WITH f, p2 ORDER BY f.rating DESC LIMIT 5
MATCH (p2)-[:FRIENDS]->(p3)
RETURN DISTINCT p3

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 31



Query Composition
[https://neo4j.com/docs/cypher-manual/current/clauses/with/]

WITH clause

I Like RETURN followed by a process pipe
I Chains subqueries together, piping the results from one to be used as starting points in the next
I Like RETURN, WITH defines – including aggregation – the output before it is passed on

Example (Average age of the youngest player in each team)

Aggregation of aggregates
MATCH (p:Player)-[:PLAYS]->(t:Team)
WITH t, min(p.age) AS age
RETURN avg(age)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 31



Query Composition
[https://neo4j.com/docs/cypher-manual/current/clauses/with/]

WITH clause

I Like RETURN followed by a process pipe
I Chains subqueries together, piping the results from one to be used as starting points in the next
I Like RETURN, WITH defines – including aggregation – the output before it is passed on

Example (Teams whose players are on average younger than 25)

Filter on aggregates
MATCH (p:Player)-[:PLAYS]->(t:Team)
WITH t, avg(p.age) AS age WHERE age < 25
RETURN t

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 31



Query Composition – Unions
[https://neo4j.com/docs/cypher-manual/current/clauses/union/]

UNION DISTINCT or UNION
Combines two query results and removes duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”

UNION ALL
Combines two query results and retains duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”
“Hitchcock”

1 name= “Hitchcock”

{:Actor}

2 name= “Helen Mirren”

{:Actor}

3 title= “Hitchcock”

{:Movie}

4 name= “Anthony Hopkins”

{:Actor}

{:ACTS_IN}

{:ACTS_IN}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 32



Query Composition – Unions
[https://neo4j.com/docs/cypher-manual/current/clauses/union/]

UNION DISTINCT or UNION
Combines two query results and removes duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”

UNION ALL
Combines two query results and retains duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”
“Hitchcock”

1 name= “Hitchcock”

{:Actor}

2 name= “Helen Mirren”

{:Actor}

3 title= “Hitchcock”

{:Movie}

4 name= “Anthony Hopkins”

{:Actor}

{:ACTS_IN}

{:ACTS_IN}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 32



Query Composition – Unions
[https://neo4j.com/docs/cypher-manual/current/clauses/union/]

UNION DISTINCT or UNION
Combines two query results and removes duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”

UNION ALL
Combines two query results and retains duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”
“Hitchcock”

1 name= “Hitchcock”

{:Actor}

2 name= “Helen Mirren”

{:Actor}

3 title= “Hitchcock”

{:Movie}

4 name= “Anthony Hopkins”

{:Actor}

{:ACTS_IN}

{:ACTS_IN}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 32



Query Composition – Unions
[https://neo4j.com/docs/cypher-manual/current/clauses/union/]

UNION DISTINCT or UNION
Combines two query results and removes duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”

UNION ALL
Combines two query results and retains duplicates

MATCH (n:Actor)
RETURN n.name AS name
UNION ALL
MATCH (n:Movie)
RETURN n.title AS name

name
“Anthony Hopkins”
“Helen Mirren”
“Hitchcock”
“Hitchcock”

1 name= “Hitchcock”

{:Actor}

2 name= “Helen Mirren”

{:Actor}

3 title= “Hitchcock”

{:Movie}

4 name= “Anthony Hopkins”

{:Actor}

{:ACTS_IN}

{:ACTS_IN}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 32



Lists



Lists
[https://neo4j.com/docs/cypher-manual/current/values-and-types/lists/]

I Lists can be stored as properties
(if all elements have the same type) m1

title= “True Romance”
lang= [“en”, “fr”, “de”]

{Movie}

p1
name= “Lucy”
speaks= [“en”, “fr”]

{Person}
{:LIKES}

Example

I All movies available in English and French

MATCH (m:Movie)
WHERE "en" IN m.lang AND "fr" IN m.lang
RETURN m.title

m.title
“True Romance”

I All movies and the languages they are available in

MATCH (m:Movie)
UNWIND m.lang AS language
RETURN m.title, language

m.title language
“True Romance” “en”
“True Romance” “fr”
“True Romance” “de”

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 33



Lists
[https://neo4j.com/docs/cypher-manual/current/values-and-types/lists/]

I Lists can be stored as properties
(if all elements have the same type) m1

title= “True Romance”
lang= [“en”, “fr”, “de”]

{Movie}

p1
name= “Lucy”
speaks= [“en”, “fr”]

{Person}
{:LIKES}

Example

I All movies available in English and French

MATCH (m:Movie)
WHERE "en" IN m.lang AND "fr" IN m.lang
RETURN m.title

m.title
“True Romance”

I All movies and the languages they are available in

MATCH (m:Movie)
UNWIND m.lang AS language
RETURN m.title, language

m.title language
“True Romance” “en”
“True Romance” “fr”
“True Romance” “de”

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 33



Lists
[https://neo4j.com/docs/cypher-manual/current/values-and-types/lists/]

I Lists can be stored as properties
(if all elements have the same type) m1

title= “True Romance”
lang= [“en”, “fr”, “de”]

{Movie}

p1
name= “Lucy”
speaks= [“en”, “fr”]

{Person}
{:LIKES}

Example

I All movies available in English and French

MATCH (m:Movie)
WHERE "en" IN m.lang AND "fr" IN m.lang
RETURN m.title

m.title
“True Romance”

I All movies and the languages they are available in

MATCH (m:Movie)
UNWIND m.lang AS language
RETURN m.title, language

m.title language
“True Romance” “en”
“True Romance” “fr”
“True Romance” “de”

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 33



Filtering on Lists
[https://neo4j.com/docs/cypher-manual/current/functions/predicate/]

Predicate Functions for Lists

I Tests whether a predicate holds for all elements of this list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE all(b IN bs WHERE b.age > a.age)
RETURN a.name

Result:
a.name
Charlie
Bob

I Tests whether a predicate holds for at least one element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE any(b IN bs WHERE b.age < a.age)
RETURN a.name

Result: a.name
Alice

1
name= “Alice”
age= 38

2
name= “Charlie”
age= 53

3
name= “Bob”
age= 25

4
name= “Daniel”
age= 54

5
name= “Eskil”
age= 41

{:KNOWS} {:KNOWS}

{:KNOWS} {:MARRIED}

{:KNOWS}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 34



Filtering on Lists
[https://neo4j.com/docs/cypher-manual/current/functions/predicate/]

Predicate Functions for Lists

I Tests whether a predicate holds for all elements of this list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE all(b IN bs WHERE b.age > a.age)
RETURN a.name

Result:
a.name
Charlie
Bob

I Tests whether a predicate holds for at least one element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE any(b IN bs WHERE b.age < a.age)
RETURN a.name

Result: a.name
Alice

1
name= “Alice”
age= 38

2
name= “Charlie”
age= 53

3
name= “Bob”
age= 25

4
name= “Daniel”
age= 54

5
name= “Eskil”
age= 41

{:KNOWS} {:KNOWS}

{:KNOWS} {:MARRIED}

{:KNOWS}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 34



Filtering on Lists Cont’d
[https://neo4j.com/docs/cypher-manual/current/functions/predicate/]

Predicate Functions for Lists

I Tests whether a predicate holds for exactly one element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE single(b IN bs WHERE b.age < a.age)
RETURN a.name

Result: a.name
Alice

I Tests whether a predicate holds for no element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE none(b IN bs WHERE b.age < a.age)
RETURN a.name

Result:
a.name
Charlie
Bob

1
name= “Alice”
age= 38

2
name= “Charlie”
age= 53

3
name= “Bob”
age= 25

4
name= “Daniel”
age= 54

5
name= “Eskil”
age= 41

{:KNOWS} {:KNOWS}

{:KNOWS} {:MARRIED}

{:KNOWS}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 35



Filtering on Lists Cont’d
[https://neo4j.com/docs/cypher-manual/current/functions/predicate/]

Predicate Functions for Lists

I Tests whether a predicate holds for exactly one element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE single(b IN bs WHERE b.age < a.age)
RETURN a.name

Result: a.name
Alice

I Tests whether a predicate holds for no element in the list
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs
WHERE none(b IN bs WHERE b.age < a.age)
RETURN a.name

Result:
a.name
Charlie
Bob

1
name= “Alice”
age= 38

2
name= “Charlie”
age= 53

3
name= “Bob”
age= 25

4
name= “Daniel”
age= 54

5
name= “Eskil”
age= 41

{:KNOWS} {:KNOWS}

{:KNOWS} {:MARRIED}

{:KNOWS}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 35



Paths

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 36



Path Variables
[https://neo4j.com/docs/cypher-manual/current/clauses/match/#find-paths]

Path Variables

I Matched paths can be assigned to variables for further processing
I UNWIND can be used to access nodes and edges on the path
I Paths can be returned

Example

MATCH p = (a:Author)-[:WROTE]->(:Post)((:Post)-[:REPLY_TO]->(:Post))+
UNWIND nodes(p) AS post
RETURN p, post.date

I When working with path pattern care should to be taken: they easily match a large number of
paths (exponential blow-up)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 37



Path Variables
[https://neo4j.com/docs/cypher-manual/current/clauses/match/#find-paths]

Path Variables

I Matched paths can be assigned to variables for further processing
I UNWIND can be used to access nodes and edges on the path
I Paths can be returned

Example

MATCH p = (a:Author)-[:WROTE]->(:Post)((:Post)-[:REPLY_TO]->(:Post))+
UNWIND nodes(p) AS post
RETURN p, post.date

I When working with path pattern care should to be taken: they easily match a large number of
paths (exponential blow-up)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 37



Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]

Shortest Paths

I Path between two nodes with minimum number of edges

Example

I Match all shortest paths
MATCH p = ALL SHORTEST
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

I Are the queries above and below equivalent?
MATCH p = ALL SHORTEST (start:City)-[:TRAIN]->+(dest:City)
WHERE start.name = "Lyon" AND dest.name = "Berlin"
RETURN p

I No, for the second query all shortest paths between any two cities are computed and then filtered

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 38



Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]

Shortest Paths

I Path between two nodes with minimum number of edges

Example

I Match all shortest paths
MATCH p = ALL SHORTEST
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

I Are the queries above and below equivalent?
MATCH p = ALL SHORTEST (start:City)-[:TRAIN]->+(dest:City)
WHERE start.name = "Lyon" AND dest.name = "Berlin"
RETURN p

I No, for the second query all shortest paths between any two cities are computed and then filtered

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 38



Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]

Shortest Paths

I Path between two nodes with minimum number of edges

Example

I Match all shortest paths
MATCH p = ALL SHORTEST
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

I Are the queries above and below equivalent?
MATCH p = ALL SHORTEST (start:City)-[:TRAIN]->+(dest:City)
WHERE start.name = "Lyon" AND dest.name = "Berlin"
RETURN p

I No, for the second query all shortest paths between any two cities are computed and then filtered
Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 38



Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]

Shortest Paths – Variants

Example

I Match the top k shortest paths
MATCH p = SHORTEST 5
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

I Match an arbitrary shortest path (same as SHORTEST 1)
MATCH p = ANY
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 39



Shortest Paths
[https://neo4j.com/docs/cypher-manual/current/patterns/shortest-paths/]

Shortest Paths – Variants

Example

I Match the top k shortest paths
MATCH p = SHORTEST 5
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

I Match an arbitrary shortest path (same as SHORTEST 1)
MATCH p = ANY
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 39


	Matching, Filtering, Result Definition
	Aggregation
	Composition
	Lists
	Paths

