Big Graph Processing Systems

Part Il: Property Graphs
» Chapter 1: A Concrete Query Language

Christopher Spinrath
CNRS — LIRIS — Lyon 1 Université

DISS Master 2025

This presentation is an adaption of slides from Angela Bonifati

UNIVERSITE

L|R|S LYON 1

Graph Query Languages

- RPQs with data tests (node & edge properties) - Create, Read, Update, Delete
Academia

- Complex path expressions
GXPath

- Read only. - Configurable match semantics
- Path macro (complex path - Construct & project graphs
expressions) - Composable (views, omnigraphs)
Academia - Catalog

-Schema

Reading graphs
Gomplex path expressions

- Construct & project graphs
- Gomposable

Reading graphs

CRUD
log
Consiruet & project
Composatie
- Create, Read, Update, Delete (CRUD) Views/omnigraph Mamed graphs
1 Catalog
1

lamed graphs

Complex path expressions
Construct & project graphs.
Composable

Source: Petra Selmer
www.gqlstandards.org /existing-languages, 10/01/2025, Copyright © 2018-2024 JCC Consulting, Inc., licensed under the Apache License, Version 2.0]

‘Schema
,,,,,,,,,,,,, [ru—
pcadormiy - Create, Read
- Advanced complex path expressions
~ Construct & project graphs
- Composable s

Academia
Regular
Queries

[https:

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Graph Database Engines

DB-Engines Ranking of Graph DBMS Neodj

— Microsoft Azure Cosmos DB
Aerospike
Virtuoso

— ArangoDB

— OrientDB
GraphDB

— Memgraph

— Amazon Neptune
JanusGraph
Stardog

— NebulaGraph
Fauna

. A
Y e m@
M\M TigerGraph
\‘/ — Dgraph

January 2025, DB-En

0.001 s 4
2014 2016 2018 2020 2022 2024 12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2

Graph Database Engines

DB-Engines Ranking of Graph DBMS Neodj

— Microsoft Azure Cosmos DB
Aerospike
Virtuoso

— ArangoDB

— OrientDB
GraphDB

— Memgraph

— Amazon Neptune
JanusGraph
Stardog

— NebulaGraph
Fauna
TigerGraph

— Dgraph

Score (logarithmic scale)

January 2025, DB-Engines.com
0.001

2014 2016 2018 2020

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2

GQL and openCypher

openCypher

[https://opencypher.org]
» Declarative language for property graphs
» open source specification
» aims to be human readable

» Implemented by various database, e.g.

» Amazon Neptune, CAPS, Memgraph, Neo4j,
Redisgraph, SAP HANA Graph, ..

» major influence for GQL
» openCypher “evolves” towards GQL

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 3

https://www.iso.org/standard/76120.html

GQL and openCypher

openCypher GQL

[https://opencypher.org] [https://www.gqlstandards.org/]

» Declarative language for property graphs » ISO Standard of a property graph query
language

» ISO/IEC 39075:2024
» First version published in April 2024
» 610 pages

» open source specification
» aims to be human readable

» Implemented by various database, e.g.

» Amazon Neptune, CAPS, Memgraph, Neo4j,
Redisgraph, SAP HANA Graph, .. » Syntax for specifying graph patterns is shared
with the new SQL Standard SQL/PGQ for

» major influence for GQL
graph queries

» openCypher “evolves” towards GQL

~ GQL
h
enCyP er9 Standard >

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 3

https://www.iso.org/standard/76120.html

GQL and openCypher

openCypher GQL

[https://opencypher.org] [https://www.gqlstandards.org/]

» Declarative language for property graphs » ISO Standard of a property graph query
language

» ISO/IEC 39075:2024
» First version published in April 2024
» 610 pages

» open source specification
» aims to be human readable

» Implemented by various database, e.g.

» Amazon Neptune, CAPS, Memgraph, Neo4j,
Redisgraph, SAP HANA Graph, .. » Syntax for specifying graph patterns is shared
with the new SQL Standard SQL/PGQ for

» major influence for GQL
graph queries

» openCypher “evolves” towards GQL

Neo4j's Cypher® : GQL
language Standard

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 3

https://www.iso.org/standard/76120.html

Data Model of Neo4dj: Property Graphs

[https://neodj.com /docs/getting-started /appendix /graphdb-concepts/]

Property Graphs Example

consist of {:Person,:Acteur} {:Person}
p name = “Tom Hanks” P2 name = “Robert Zemeckis”
* birthyear = 1956 Bl birthyear = 1951

{:ACTED_IN}

roles = ["Forrest”|

Y
title = “Forrest Gump”
released =1994

{:Movie}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

Data Model of Neo4dj: Property Graphs

[https://neodj.com /docs/getting-started /appendix /graphdb-concepts/]

Property Graphs Example
consist of {:Person,:Acteur} {:Person}
» nodes, » | Y name = “Tom Hanks” o name = “Robert Zemeckis”
* birthyear = 1956 Bl birthyear = 1951

{:ACTED_IN}

roles = ["Forrest”|

¥
title = “Forrest Gump”
released =1994

{:Movie}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

Data Model of Neo4dj: Property Graphs

[https://neodj.com /docs/getting-started /appendix /graphdb-concepts/]

Property Graphs Example
consist of {:Person,:Acteur} {:Person}
> nodes, P name = “Tom Hanks” o name = “Robert Zemeckis”
» edges, ! birthyear = 1956 Bl birthyear = 1951
o "
roles = [“Forrest Q@G
&
AN
\ 5
title = TForrest Gump"
released = 1994 J
{:Movie}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

Data Model of Neo4dj: Property Graphs

[https://neodj.com /docs/getting-started /appendix /graphdb-concepts/]

Property Graphs Example

consist of {:Person,:Acteur} {:Person}

name = |om Hanks” P2 name = “Robert Zemeckis”
birthyear = 1956 lll birthyear = 1951

{:ACTED_IN}

» nodes,

» edges,

» labels,

roles = ["Forrest”|

A 4
title = "Forrest Gump”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

Data Model of Neo4dj: Property Graphs

[https://neodj.com /docs/getting-started /appendix /graphdb-concepts/]

Property Graphs Example
consist of {:Person,:Acteur} {:Person}
> nodes, name = “Tom Hanks” o name = “Robert Zemeckis”
> edgesy birthyear =1956 “ birthyear =1951
» labels,
. {:ACTED_IN}
» properties.

roles = ["Forrest”|

\ 4
title = “Forrest Gump”
released = 1994

{:Movie}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

Data Model of Neo4dj: Property Graphs

[https://neodj.com /docs/getting-started /appendix /graphdb-concepts/]

Property Graphs Example
consist of {:Person,:Acteur} {:Person}
> nodes, o name = “Tom Hanks”] o name = “Robert Zemeckis”]
» edges relationships, birthyear =1956 birthyear = 1951
» labels,
. {:ACTED_IN}
» properties.
roles = ["Forrest”|
A 4
Neo4j Terminology title = “Forrest Gump”
released = 1994
» Edges are called {(Movie]

relationships

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

Data Model of Neo4dj: Property Graphs

[https://neodj.com /docs/getting-started /appendix /graphdb-concepts/]

Property Graphs Example
consist of {:Person,:Acteur} {:Person}

> nodes, o name = “Tom Hanks” o name = “Robert Zemeckis”

> edges relationships * birthyear = 1956 lll birthyear = 1951

» labels, /

. {:ACTED_IN}
» properties,
23
roles — ["“Forrect’] g (¢
» types. + — > Q/\Sg;
A 4 5
Neo4j Terminology title="Forrest Gump"
released = 1994

» Edges are called

i) {:Movie}
relationships

» Every relationship has exactly one label, which is its type

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

A Simple Example

Example {:Person} {:Movie}
T {:LIKES} ; . ; .
“ name = “Lucy { title = “Jurassic Park
The. name of aI'I' persons and the release year of @—Pﬂ released — 1093]
movies they like Y
MATCH (p:Person)-[:LIKES]->(m:Movie) "{:LIKES} {:LIKES}
RETURN .name, m.released .
P title = "True Romance” {:LIKES} name = "“Alex”
released=1993 born = 1984
{:Movie}
5 title = "“The Godfather”
released = 1972
{:Movie}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

A Simple Example

Example {:Person} {:Movie}

- 7 {:LIKES} P - -
“The name of all persons and the release year of 221112;1;;;)/ zgii;dgfgg’; Park]
movies they like” Y
MATCH (p:Person)-[:LIKES]->(m:Movie) "{:LIKES} {:LIKES}

RETURN p.name, m.released

name = “Alex”
born = 1984

title = “True Romance”
released = 1993

Ingredients {:Movie}
» A pattern consisting of..
. . . title = "The Godfather”
» ..vertex patterns (p:Person), (m:Movie) released— 1972

» ..an edge pattern -[:LIKES]->
{:Movie}

» A RETURN clause

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Pattern Syntax — Vertex Patterns

[https://neo4j.com/docs/cypher-manual /current/patterns/]

Vertex Pattern

Pattern Description

0O unidentified/anonymous vertex

(matrix) vertex identified by/bound to variable
matrix

(:Movie) unidentified vertex with label Movie

(:Moviel (Series & !Cancelled)) vertex with complex label expression

(matrix:Movie {title: "The Matrix"}) property title has value “The Matrix"

(matrix:Movie {title: "The Matrix", released: 1997}) ..and property released equals the integer
1997

(matrix:Movie WHERE matrix.released >= 1997) more verbose syntax

In a Neo4j database each node can have an arbitrary number of labels

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 6

Pattern tax — Relationship Patterns

[https://neo4j.com/docs/cypher-manual /current/patterns/]

Relationship (Edge) Pattern

Pattern Description

-- unidentified edge, matches edges in either direction

- unidentified edge, matches in forward direction

<-= unidentified edge, matches in reverse direction

-[:LIKES]-> unidentified edge with type LIKES

-[rolel-> forward edge bound to variable role

-[role:ACTED_IN]-> forward edge bound to variable role with type
ACTED_IN

-[role:ACTED_IN WHERE role.name = "Neo"]-> ..and property name has value “Neo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 7

Pattern tax — Relationship Patterns

[https://neo4j.com/docs/cypher-manual /current/patterns/]

Relationship (Edge) Pattern

Pattern Description

-- unidentified edge, matches edges in either direction

- unidentified edge, matches in forward direction

<-= unidentified edge, matches in reverse direction

-[:LIKES]-> unidentified edge with type LIKES

-[rolel-> forward edge bound to variable role

-[role:ACTED_IN]-> forward edge bound to variable role with type
ACTED_IN

-[role:ACTED_IN WHERE role.name = "Neo"]-> ..and property name has value “Neo”

In a Neo4j database each relationship has exactly one type

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 7

Pattern tax — Path Patterns

[https://neo4j.com/docs/cypher-manual /current/patterns/]

Fixed-length Path Patterns

» String of alternating vertex and edge pattern e . ° ¢ °
» Starting and ending with a vertex pattern

> (a)-—>(b)<--(c)--(d)-->(a)-->(e)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 8

Pattern Syntax — Path Patterns

[https://neo4j.com/docs/cypher-manual /current/patterns/]

Fixed-length Path Patterns

» String of alternating vertex and edge pattern e . ° ¢ °
» Starting and ending with a vertex pattern

> (a)-—>(b)<--(c)--(d)-->(a)-->(e)

Example
(p:Actor WHERE p.name = "Keanu Reeves")
-[role:ACTED_IN WHERE role.name = "Neo"]->
(m:Movie WHERE m.title = "The Matrix")

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 8

Pattern tax — Variable-length Path Patterns

[https://neodj.com /docs/cypher-manual /current /patterns /variable-length-patterns/]

Quantified Path Patterns

» Path of varying/unknown length can be matched
by adding a quantifier {n, m}

» nis a lower, and m a upper bound for
the number of repetitions

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 9

Pattern Syntax — Variable-length Path Patterns

[https://neodj.com /docs/cypher-manual /current /patterns /variable-length-patterns/]

Quantified Path Patterns

» Path of varying/unknown length can be matched
by adding a quantifier {n, m}
» nis a lower, and m a upper bound for
the number of repetitions
> (@)-->(b) (O<--0--0-->0){1,2}O-->(e) is equivalent to the “union of”

» (@)-—>M®)<--0--0O-->0O-->(e) and
> (@)->@®<—-0-—-0-->0<—-0-—-0-->0-->(e)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 9

Pattern Syntax — Variable-length Path Patterns

[https://neodj.com /docs/cypher-manual /current /patterns /variable-length-patterns/]

Quantified Path Patterns

» Path of varying/unknown length can be matched
by adding a quantifier {n, m}
» nis a lower, and m a upper bound for
the number of repetitions
> (a)-->(b) (O<--0--0-->0){1,2}O-->(e) is equivalent to the “union of”
> (2)-->®)<--0O--0-->0-->(e) and
> ()-—>B)<—-0--0-->0<—-0--0-->0-->(e)
» Both upper and lower bound are optional:

» At most two repetitions: (p1) ((:Post)-[:REPLY_T0]->(:Post)){,2}(p2)
» At least three repetitions: (p1) ((:Post)-[:REPLY_T0]->(:Post)){3,}(p2)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 9

Pattern tax — Variable-length Path Patterns Cont’'d

[https://neodj.com /docs/cypher-manual /current /patterns /variable-length-patterns/]

Quantified Path Patterns — Shorthands

» Shorthands for common cases:

» Zero or more repetitions (Kleene star): (p1) ((:Post)-[:REPLY_T0]->(:Post))*(p2)
» At least one repetition: (p1) ((:Post)-[:REPLY_TO]->(:Post))+(p2)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 10

Pattern tax — Variable-length Path Patterns Cont’'d

[https://neodj.com /docs/cypher-manual /current /patterns /variable-length-patterns/]

Quantified Path Patterns — Shorthands

» Shorthands for common cases:

» Zero or more repetitions (Kleene star): (p1) ((:Post)-[:REPLY_T0]->(:Post))*(p2)
» At least one repetition: (p1) ((:Post)-[:REPLY_TO]->(:Post))+(p2)

» Shorthand for repeating a single edge pattern:
» (pl:Post)-[:REPLY_TO]->*(p2:Post) instead of (pl:Post) (()-[:REPLY_TO0]->())*(p2:Post)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 10

Pattern Syntax — Variable-length Path Patterns Cont’d

[https://neodj.com /docs/cypher-manual /current /patterns /variable-length-patterns/]

Quantified Path Patterns — Shorthands

» Shorthands for common cases:
» Zero or more repetitions (Kleene star): (p1) ((:Post)-[:REPLY_T0]->(:Post))*(p2)
» At least one repetition: (p1) ((:Post)-[:REPLY_TO]->(:Post))+(p2)
» Shorthand for repeating a single edge pattern:
» (pl:Post)-[:REPLY_TO]->*(p2:Post) instead of (pl:Post) (()-[:REPLY_TO0]->())*(p2:Post)
» (pl:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post) (()-[:REPLY_TO0]->())+(p2:Post)
» (pl:Post)-[:REPLY_T0]->{2,4}(p2:Post) instead of
(p1:Post) (O-[:REPLY_T0]->()){2,4}(p2:Post)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 10

Pattern Syntax — Variable-length Path Patterns Cont’d

[https://neodj.com /docs/cypher-manual /current /patterns /variable-length-patterns/]

Quantified Path Patterns — Shorthands

» Shorthands for common cases:

» Zero or more repetitions (Kleene star): (p1) ((:Post)-[:REPLY_T0]->(:Post))*(p2)
» At least one repetition: (p1) ((:Post)-[:REPLY_TO]->(:Post))+(p2)

» Shorthand for repeating a single edge pattern:

» (pl:Post)-[:REPLY_TO]->*(p2:Post) instead of (pl:Post) (()-[:REPLY_TO0]->())*(p2:Post)
» (pl:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post) (()-[:REPLY_TO0]->())+(p2:Post)
» (pl:Post)-[:REPLY_T0]->{2,4}(p2:Post) instead of

(p1:Post) (O-[:REPLY_T0]->()){2,4}(p2:Post)

Question?
Are the following patterns equivalent?

» (pl:Post)-[:REPLY_TO]->+(p2:Post)
» (p1) ((:Post)-[:REPLY_TO]->(:Post))+(p2)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 10

Pattern Syntax — Variable-length Path Patterns Cont’d

[https://neodj.com /docs/cypher-manual /current /patterns /variable-length-patterns/]

Quantified Path Patterns — Shorthands

» Shorthands for common cases:

» Zero or more repetitions (Kleene star): (p1) ((:Post)-[:REPLY_T0]->(:Post))*(p2)
» At least one repetition: (p1) ((:Post)-[:REPLY_TO]->(:Post))+(p2)

» Shorthand for repeating a single edge pattern:

» (pl:Post)-[:REPLY_TO]->*(p2:Post) instead of (pl:Post) (()-[:REPLY_TO0]->())*(p2:Post)
» (pl:Post)-[:REPLY_TO]->+(p2:Post) instead of (p1:Post) (()-[:REPLY_TO0]->())+(p2:Post)
» (pl:Post)-[:REPLY_T0]->{2,4}(p2:Post) instead of

(p1:Post) (O-[:REPLY_T0]->()){2,4}(p2:Post)

Old Cypher Syntax
» Between two and four repetitions: (p1:Post)-[:REPLY_T0%2..4]->(p2:Post)
» equivalent to (p1l:Post)-[:REPLY_T0]->{2,4}(p2:Post)
» Can only be used with single edge patterns
» Does not conform to GQL

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 10

Pattern raph Patterns

[https://neo4j.com/docs/cypher-manual /current/patterns/]

Graph Patterns

» One or multiple path pattern

» separated by commata
Example

(a) -=>(b)<--(c)--(d) -->(a)-->(e), (e)-->(b)-->(d), (a)-->(a)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 11

Pattern

[https://neo4j.com/docs/cypher-manual /current/patterns/]

Graph Patterns

» One or multiple path pattern

» separated by commata
Example

(a) -=>(b)<--(c)--(d) -->(a)-->(e), (e)-->(b)-->(d), (a)-->(a)

“Warning”

» Path patterns should have at least one shared variable

» Without shared variable the graph pattern is disconnected

» Results in a cross-product of the results for connected sub patterns
» Quadratic blow up in result size and computational complexity

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 11

Pattern Semantics

Semantics (of Neo4j)

» Homomorphism-like semantics
» but every edge can only be matched once
» GQL: Different edges matching semantics

» openCypher: trail semantics

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:Person} {:Movie}

name = "Lucy” {:LIKES} title = "Jurassic Park”
born = 1982 released =1993

a

{:LIKES} {:LIKES}

Y

name = “Alex”
born =1984

title = “True Romance”
released =1993

{:Movie}

title = “The Godfather”
released = 1972

{:Movie}

Pattern Semantics

Semantics (of Neo4j)

.)) {:Person} {:Movie}
» Homomorphism-like semantics {:LIKES}
name = “Lucy” [1° title = "Jurassic Park”
» but every edge can only be matched once born = 1982 released = 1903
» GQL: Different edges matching semantics 4
i) {:LIKES} {:LIKES}
» openCypher: trail semantics v

{:LIKES}

name = “Alex”
born =1984

title = “True Romance”
released =1993

Example
. {:Movie}
How many matches does the following graph
pattern have?
title = "The Godfather”
(pl:Person) ' released = 1972
-[:LIKES]-> (Hovie)

(m:Movie {title: "The Godfatherl}),
(p2:Person) -[:LIKES]->(m)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Pattern Syntax

[https://neodj.com/docs/cypher-manual /current/patterns/]

Which of these strings are patterns?
A: (a,b:Movie)-[:SHOWN_IN]->(e), (f)
B: (a:Movie)-[:SHOWN_IN]->*()

C: (:Movie)-[:SHOWN_IN]->

D

()<--(a:Movie)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 13

Pattern Syntax

[https://neodj.com/docs/cypher-manual /current/patterns/]

Which of these strings are patterns?
A: fasbMevie)—fSHOWN—TN—>(e)55
B: (a:Movie)-[:SHOWN_IN]->*()

C: (:lMovie)—[:SHOWN_IN]->
D: (OO<--(a:Movie)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Pattern Syntax

[https://neodj.com/docs/cypher-manual /current/patterns/]

Which of these strings are patterns?
A: fasbMevie)—fSHOWN—TN—>(e)55
B: (a:Movie)-[:SHOWN_IN]->*()

C: (:lMovie)—[:SHOWN_IN]->
D: (OO<--(a:Movie)

Which patterns specify a loop?

A: (a:Movie WHERE a.name = "Matrix")-->(a)

B: (a:Movie WHERE a.name = "Matrix")-->(b:Movie WHERE b.name = "Matrix")
C: (a:Movie WHERE a.name = "Matrix")-->(a:Movie WHERE a.name = "Matrix")
D: (a:Movie WHERE name = "Matrix")-->({name: "Matrix"})

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 13

Pattern Syntax

[https://neodj.com/docs/cypher-manual /current/patterns/]

Which of these strings are patterns?
A: fasbMevie)—fSHOWN—TN—>(e)55
B: (a:Movie)-[:SHOWN_IN]->*()

C: (:lMovie)—[:SHOWN_IN]->
D: (OO<--(a:Movie)

Which patterns specify a loop?

A: (a:Movie WHERE a.name = "Matrix")-->(a)

B: (a:Movie WHERE a.name = "Matrix")-->(b:Movie WHERE b.name = "Matrix")
C: (a:Movie WHERE a.name = "Matrix")-->(a:Movie WHERE a.name = "Matrix")
D: (a:Movie WHERE name = "Matrix")-->({name: "Matrix"})

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 13

Matching, Filtering, Result Definition

Matching

MATCH clause

» Primary way of querying Neo4j
» Takes a subgraph pattern
» and binds variables to matches

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:Person} {:Movie}
name = “Lucy” {:LIKES} title = "Jurassic Park”
born = 1982 released = 1993
A
{:LIKES} {:LIKES}
Y
3 title = “True Romance” name = “Alex”
released = 1993 born = 1984
{:Movie}

title = "The Godfather”
released = 1972

{:Movie}

14

Matching

MATCH clause

» Primary way of querying Neo4j
» Takes a subgraph pattern
» and binds variables to matches

Example
MATCH (p:Person)-[:LIKES]->(m:Movie)
RETURN p.name, m.released

Question

How many answers does the query return?

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:Person} {:Movie}
name = “Lucy” {:LIKES} title = "Jurassic Park”
born = 1982 released = 1993
A
{:LIKES} {:LIKES}
Y
3 title = “True Romance” name = “Alex"
released = 1993 born = 1984
{:Movie}

title = "The Godfather”
released = 1972

{:Movie}

14

MATCH clause

» Primary way of querying Neo4j {:Person} {:Movie}
» Takes a subgraph pattern @ﬂu title = “Jurassic Park”]
» and binds variables to matches born = 1962 released = 19‘9‘3
{:LIKES} {:LIKES}
Example v

MATCH (p:Person)-[:LIKES]->(m:Movie) Py title= “True Romance”
born=1984

RETURN p.name, m.released released = 1993

{:Movie}
Result .

Lucy 1993 title— "The Godfather”
Lucy 1993 released = 1972

Alex 1993 {:Movie}

Alex 1993

Alex 1972

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 14

Multiple MATCH clauses

» A query can have multiple MATCH clauses

» Variable bindings are “passed” to the next
MATCH

Example

MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:Person} {:Movie}
name = “Lucy” {:LIKES} title = “Jurassic Park”
born = 1982 released =1993
A
{:LIKES} {:LIKES}
4
3 title = "True Romance” {:LIKES} name = “Alex”
released = 1993 born =1984
{:Movie} {:Person}

. X@%\

title = “The Godfather”
released = 1972

{:Movie}

Multiple MATCH clauses

» A query can have multiple MATCH clauses

» Variable bindings are “passed” to the next
MATCH

Example

MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Question

How many answers does the query return?

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:Person} {:Movie}
name = “Lucy” {:LIKES} title = “Jurassic Park”
born = 1982 released =1993
A
{:LIKES} {:LIKES}
4
3 title ="True Romance” {:LIKES} name = “Alex”
released = 1993 born=1984
{:Movie} {:Person}

. X@%\

title = “The Godfather”
released = 1972

{:Movie}

Multiple MATCH clauses

» A query can have multiple MATCH clauses

» Variable bindings are “passed” to the next
MATCH

Example

MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Question

How many answers does the query return?
9 answers

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:Person} {:Movie}
name = “Lucy” {:LIKES} title = “Jurassic Park”
born = 1982 released =1993
A
{:LIKES} {:LIKES}
4
3 title ="True Romance” {:LIKES} name = “Alex”
released = 1993 born=1984
{:Movie} {:Person}

. X@%\

title = “The Godfather”
released = 1972

{:Movie}

Multiple MATCH clauses

» A query can have multiple MATCH clauses

» Variable bindings are “passed” to the next
MATCH

Example

MATCH (p:Person)-[:LIKES]->(m:Movie)
MATCH (p:Person)-[:LIKES]->(o:Movie)
WHERE m.released = o.released
RETURN m.title, o.title

Question

How many answers does the query return?
9 answers

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:Person} {:Movie}
name = “Lucy” {:LIKES} title = “Jurassic Park”
born = 1982 released =1993
A
{:LIKES} {:LIKES}
A 4
3 title = "True Romance” {:LIKES} name = “Alex”
released = 1993 born =1984
{:Movie}

title = “The Godfather”
released = 1972

{:Movie}

» Every edge can only be matched once
per MATCH clause

Optional Match

[https://neodj.com /docs/cypher-manual /current /clauses /optional-match /]

MATCH (a:Movie) OPTIO...

. 2] a.title x.name
Optional Match clause =

The Matrix null
. . The Matrix Reloaded Il
» Matches patterns, just like MATCH o v eloads ™
The Matrix Revolutions null
» Matches the complete pattern or not The Devil's Advocate nul

A Few Good M Aaron Sorki

» If no matches are found, o moeeTEn eron s

))) Top Gun Jim Cash
OPTIONAL MATCH will use nulls as bindings Jerry Maguire Gameron Growe

» Like relational left outer join Stand By Mo rul
As Good as It Gets null
Example What Dreams May Come null
Snow Falling on Cedars null
. You've Got Mail null
MATCH (a' :Movie) Sleepless in Seattle null
OPTIONAL MATCH (a)<-[:WROTE]-(x) Joe Versus the Volcano null

RETURN a.title , X.name When Harry Met Sally Nora Ephron
That Thing You Do null

Returned 41 rows in 40 ms.

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 16

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

WHERE clause

» After an (OPTIONAL) MATCH, it adds constraints to the
(optional) match

name = "Peter”
bl age =34

email = “peter_n@example.com”
» After a WITH clause, it just filters the result A
{:KNOWS}
Example since = 1999
MATCH (n)
WHERE n.name = "Peter" Swedish name = "Andres”
OR (n.age < 30 AND n.name = "Tobias") {:8wedish} zgit:3? hite"
e = wnl
OR NOT (n.name = "Tobias" OR n.name="Peter")
since =2012
Y

name = “Tobias”
B age =25
address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 17

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

WHERE clause
» After an (OPTIONAL) MATCH, it adds constraints to the
(optional) match

» After a WITH clause, it just filters the result

Example

MATCH (n)
WHERE n.name = "Peter"

OR (n.age < 30 AND n.name = "Tobias")

OR NOT (n.name = "Tobias" OR n.name="Peter")
RETURN n

Node[0]{name:"Andres”,age:36,belt:"white" }
Node[1]{address:"Sweden/Malmo”,name:" Tobias",age:25}

Node[2]{email:"peter_n@example.com”,name:"Peter"”, age:34}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

name = "Peter”
bl age =34

email = “peter_n@example.com”
A

{:KNOWS}
since =1999

name = “Andres”

{:Swedish} age =36
belt = “white”
{:KNOWS}
since =2012
Y

name = “Tobias”
B age =25
address = “Sweden/Malmo”

17

Filtering

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on node label name — “Peter”
MATCH (n) WHERE n:Swedish RETURN n Pl age =34

n_______ | —
a

Node[0]{name:"Andres",age:36,belt:"white"} {:xnows}

since =1999

name = “Andres”

{:Swedish} age =36
belt = “white”
{:KNOWS}
since =2012
Y

name = " Tobias”
Bl age =25
address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 18

Filtering

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on node label
MATCH (n) WHERE n:Swedish RETURN n

name = "Peter”
bl age =34

email = “peter_n@example.com”
A
Node[0]{name:"Andres”,age:36,belt:"white" } {:KNOWS}
» Filter on a node property since = 1999

MATCH (n) WHERE n.age < 30 RETURN n

o | i)

Node[1]{address:"Sweden/Malmo”,name:"Tobias",age:25}

name = “Andres”
age =36
belt = “white”

{:KNOWS}
since =2012

Y

name = " Tobias”
Bl age =25
address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on node label
MATCH (n) WHERE n:Swedish RETURN n

name = "Peter”
bl age =34

email = “peter_n@example.com”
A
Node[0]{name:"Andres”,age:36,belt:"white" } {:KNOWS}
» Filter on a node property since = 1999

MATCH (n) WHERE n.age < 30 RETURN n

o | i)

name = “Andres”
age =36
belt = “white”

Node[1]{address:"Sweden/Malmo”,name:"Tobias",age:25}
{:KNOWS}
» Filter on a relationships o
since =2012
MATCH (n)-[k]->(f) WHERE k:KNOWS AND k.since < 2000 RETURN f v
o " " " Gl age =25
Node[2]{email:"peter_n@example.com”,name:"Peter"”, age:34} address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Filtering

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on lists name — “Peter”
MATCH (n) WHERE n.name IN ["Peter", "Tobias"] RETURN n Pl age =34

o R
a

Node[1]{address:"Sweden/Malmo”,name:"Tobias”,age:25} {:xNOwWS}

Node[2]{email:"peter_n@example.com” ,name:"Peter” age:34} since = 1999

name = “Andres”

{:Swedish} age =36
belt = “white”
{:KNOWS}
since =2012
Y

name = " Tobias”
Bl age =25
address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 19

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on lists
MATCH (n) WHERE n.name IN ["Peter", "Tobias"] RETURN n

name = "Peter”
bl age =34

email = “peter_n@example.com”
A
Node[1]{address:"Sweden/Malmo”,name:" Tobias" age:25} {:KNOWS}
Node[2]{email:"peter_n@example.com” ,name:"Peter” age:34} since = 1999

name = “Andres”
age =36
belt = “white”

» Filter on string ...

» properties: MATCH (n) WHERE n.name = 'Peter' RETURN n {:Swedish}

» prefixes: MATCH (n) WHERE n.name STARTS WITH 'Pet' RETURN n
» suffixes: MATCH (n) WHERE n.name ENDS WITH 'ter' RETURN n {:KNOWS}
» infixes: MATCH (n) WHERE n.name CONTAINS 'ete' RETURN n
» regex: MATCH (n) WHERE n.name =~ 'P[et]+r?' RETURN n Since:2012"
T " " " Bl age =25
Node[2]{email:"peter_n®@example.com”,name:"Peter”, age:34} address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Filtering

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

name = "Peter”
age =34

email = “peter_n@example.com”
A

» Filter on property existence
MATCH (n) WHERE n.belt IS NOT NULL RETURN n

(default value for missing properties is NULL)

n______ | {Kous)

Node[0]{name:"Andres”,age:36,belt:"white" } since = 1999
name = “Andres”
{:Swedish} age =36
belt = “white”
{:KNOWS}
since =2012
Y

name = " Tobias”
Bl age =25
address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 20

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on property existence
MATCH (n) WHERE n.belt IS NOT NULL RETURN n
(default value for missing properties is NULL)

Node[0]{name:"Andres”,age:36,belt:"white" }

» Filter on property absence/non-existence
MATCH (n) WHERE n.belt IS NULL RETURN n

Node[1]{address:"Sweden/Malmo”,name:"Tobias",age:25}
Node[2]{email:"peter_n@example.com”,name:"Peter”, age:34}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

name = "Peter”
bl age =34

email = “peter_n@example.com”
A

{:KNOWS}
since =1999

name = “Andres”

{:Swedish} age =36
belt = “white”
{:KNOWS}
since =2012
Y

name = " Tobias”
Bl age =25
address = “Sweden/Malmo”

20

Filtering

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on patterns

MATCH (t { name: 'Tobias' }), (others) name = “Peter
bl age =34

WHERE others.age > 30 AND (tobias)<--(others) email = “peter_n®@example.com”
RETURN others — i

:KNOWS
sy
since =1999

Node[0]{name:"Andres”,age:36,belt:"white" }

name = “Andres”
age =36
belt = “white”

{:Swedish}

{:KNOWS}

since =2012

Y

name = " Tobias”
Bl age =25
address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 21

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on patterns

MATCH (t { name: 'Tobias' }), (others) name = “Peter
bl age =34

WHERE others.age > 30 AND (tobias)<--(others) email = “peter_n®@example.com”
RETURN others — i

:KNOWS
sy
since =1999

Node[0]{name:"Andres”,age:36,belt:"white" }

name = “Andres”
age =36
belt = “white”

» ..with negation {:Swedish}

MATCH (persons), (p {name: 'Peter'})
WHERE NOT (persons)-->(p)
RETURN persons

since =2012
:

Node[1]{address:"Sweden/Malmo”,name:" Tobias",age:25} name — “Tobias”

{:KNOWS}

Node[2]{email:"peter_n@example.com”,name:"Peter” age:34} Gl age =25
address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 21

[https://neodj.com /docs/cypher-manual /current /clauses /where/]

» Filter on patterns

MATCH (t { name: 'Tobias' }), (others) name = “Peter
bl age =34

WHERE others.age > 30 AND (tobias)<--(others) email = “peter_n®@example.com”
RETURN others — i

:KNOWS
sy
since =1999

Node[0]{name:"Andres”,age:36,belt:"white" }

name = “Andres”
age =36
belt = “white”

» ..on existence
{:Swedish}

MATCH (person) WHERE EXISTS((person)-->())

RETURN person
{:KNOWS}
person
" " noLeom since =2012
Node[0]{name:"Andres”,age:36,belt:"white" } v
name = " Tobias”
Bl age =25

address = “Sweden/Malmo”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 21

Projection

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

RETURN clause

MATCH (n) RETURN n, "node "

» Defines what to include in the query result set

» Comparable with relational projection

» Only once per query =
» Allows to return nodes, edges, properties, or any expressions
>

Column can be rename using AS <new name>

Example

MATCH (n)
RETURN n, "node " + id(n) + " dis " +
CASE WHEN n.title IS NOT NULL THEN "a Movie"
WHEN EXISTS(n.name) THEN "a Person"
ELSE "something unknown"
END AS about

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

n

released 1999
title The Matrix
Welcome to the Real

tagline
World

born 1964

name Keanu Reeves

born 1967

name Carrie-Anne Moss

born 1961

Returned 174 rows in 46 ms.

about

node 175

is a Movie

node 176

is a Person

node 177

is a Person

node 178

is a Person

22

Projection

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

» Return nodes
MATCH (n { name: "B" }) RETURN n

Node[1]{name:"B"}

(Ml happy = "Yes!”

{:KNOWS}

1

{:BLOCKS}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 23

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

» Return nodes
MATCH (n { name: "B" }) RETURN n

Node[1]{name:"B"}

(Ml happy = “Yes!”
» Return relationships
MATCH (n { name: "A" })-[r:KNOWS]->(c) RETURN r
(o)
:KNOWS[0]{}

{:BLOCKS}

1

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 23

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

» Return nodes
MATCH (n { name: "B" }) RETURN n

Node[1]{name:"B"} Wl happy = “Yes!”

» Return relationships
MATCH (n { name: "A" })-[r:KNOWS]->(c) RETURN r

{:BLOCKS}

1

(xvos)
:KNOWS|[0]{}

» Return properties
MATCH (n { name: "A" }) RETURN n.name

n.name

“p

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 23

Projection

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

. (Ml happy = “Yes!”
» Column alias

MATCH (a { name: "A" })
RETURN a.age AS SomethingTotallyDifferent

SomethingTotallyDifferent

55

{:KNOWS}

1

{:BLOCKS}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 24

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

. (Ml happy = “Yes!”
» Column alias

MATCH (a { name: "A" })
RETURN a.age AS SomethingTotallyDifferent

SomethingTotallyDifferent

55

{:KNOWS} {:BLOCKS}

1

» Return all bounded elements
MATCH p=(a { name: "A" })-[r]->(b) RETURN x*

a b r
P

Node[0]{name:"A" happy:"Yes!"”,age:55} Node[1]{name:"B"} [Node[0]{name:"A" happy:"Yes!” age: :BLOCKSJ[1]{}
55},:BLOCKS[1]{},Node[1]{name:"B"}]

Node[0]{name:"A” happy:"Yes!"”,age: 55} Node[l][{name:"B"} [Node[0]{name:"A" happy:"Yes!" age: :KNOWSJ0]{}

55},:KNOWSJ0]{},Node[1]{name:"B"}]

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 24

Projection

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

» Returning optional properties ((ll happy = “VYes!”

MATCH (n) RETURN n.age

55 {:KNOWS}

1

{:BLOCKS}
null

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 25

Projection

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

» Returning optional properties ((ll happy = “VYes!”

MATCH (n) RETURN n.age

55 {:KNOWS}

-
(a)-—>0)

true “I'm a literal” [[Node[0]{name:"A" happy:"Yes!" age:55},:BLOCKS[1]{} Node[1]{name:"B"}],
[Node[0]{name:"A" happy:"Yes!” age:55},:KNOWS[0]{},Node[1]{name:"B" }]]

{:BLOCKS}
null

» Other expressions
MATCH (a { name: "A" }) RETURN a.age > 30, "I'm a literal", (a)-->()

a.age > 30 “I'm a literal”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 25

[https://neodj.com /docs/cypher-manual /current /clauses/return/]

» Returning optional properties ((ll happy = “VYes!”

MATCH (n) RETURN n.age

55 {:KNOWS}

-
(a)-—>0)

true “I'm a literal” [[Node[0]{name:"A" happy:"Yes!" age:55},:BLOCKS[1]{} Node[1]{name:"B"}],
[Node[0]{name:"A" happy:"Yes!” age:55},:KNOWS[0]{},Node[1]{name:"B" }]]

{:BLOCKS}
null
» Other expressions
MATCH (a { name: "A" }) RETURN a.age > 30, "I'm a literal", (a)-->()

a.age > 30 “I'm a literal”

» Unique results
MATCH (a { name: "A" })-->(b) RETURN DISTINCT b

b
Node[1]{name:"B"}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 25

Result Modification — Sorting

[https://neodj.com /docs/cypher-manual /current /clauses /order-by /]

ORDER BY clause

» Sub-clause following RETURN or WITH
» Specifies how the output should be sorted

» Can only sort on properties,
not nodes or relationships

» null will come last in ascending order (ASC),
and first in descending order (DESC)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 26

Result Modification — Sorting

[https://neodj.com /docs/cypher-manual /current /clauses /order-by /]

ORDER BY clause Example (Order by property)
» Sub-clause following RETURN or WITH MATCH (n) RETURN n ORDER BY n.name
» Specifies how the output should be sorted _
» Can only sort on properties, Node[0]{name:"A",age:34,length:170}
not nodes or relationships Node[1]{name:"B",age:34}

» null will come last in ascending order (Asc), Node[2]{name:"C" age:32 length:185}
and first in descending order (DESC)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

26

Result Modification — Sorting

[https://neodj.com /docs/cypher-manual /current /clauses /order-by /]

ORDER BY clause Example (Order by property)
» Sub-clause following RETURN or WITH MATCH (n) RETURN n ORDER BY n.name
» Specifies how the output should be sorted
» Can only sort on properties, Node[0]{name:"A",age:34,length:170}
not nodes or relationships Node[1]{name:"B",age:34}

» null will come last in ascending order (Asc), Node[2]{name:"C" age:32 length:185}
and first in descending order (DESC)

Example (Order by multiple property)

MATCH (n) RETURN n ORDER BY n.age, n.name
Node[2]{name:"C" age:32,length:185}
Node[0]{name:"A" age:34,length:170}
Node[1]{name:"B" age:34}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 26

Result Modification — Sorting

[https://neodj.com /docs/cypher-manual /current /clauses /order-by /]

ORDER BY clause

» Sub-clause following RETURN or WITH
» Specifies how the output should be sorted

» Can only sort on properties,
not nodes or relationships

» null will come last in ascending order (ASC),

and first in descending order (DESC)
Example (Order by multiple property)

MATCH (n) RETURN n ORDER BY n.age, n.name
Node[2]{name:"C" age:32,length:185}
Node[0]{name:"A" age:34,length:170}
Node[1]{name:"B" age:34}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Example (Order by property)

MATCH (n) RETURN n ORDER BY n.name

Node[0]{name:"A",age:34,length:170}
Node[1]{name:"B",age:34}
Node[2]{name:"C",age:32,length:185}

Example (Order nodes in descending order)

MATCH (n) RETURN n ORDER BY n.name DESC

Node[2]{name:"C",age:32,length:185}
Node[1]{name:"B",age:34}
Node[0]{name:"A",age:34,length:170}

26

Result Modification — LIMIT clause

[https://neodj.com /docs/cypher-manual /current /clauses/limit/]

LIMIT clause

» Constrains the number of rows in the output
» Accepts any expression that evaluates to a positive integer

» Expression cannot refer to nodes or relationships

» Return first from the top
MATCH (n) RETURN n ORDER BY n.name LIMIT 3

Node[0]{name:"A"}
Node[0]{name:"B"}
Node[0]{name:"C"}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 27

Result Modification — LIMIT clause

[https://neodj.com /docs/cypher-manual /current /clauses/limit/]

LIMIT clause

» Constrains the number of rows in the output
» Accepts any expression that evaluates to a positive integer
» Expression cannot refer to nodes or relationships

» Return first from the top
MATCH (n) RETURN n ORDER BY n.name LIMIT 3

» Return first from expression
MATCH (n) RETURN n ORDER BY n.name LIMIT toInt(3 * rand()) + 1

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 27

Result Modificat — OFFSET clause

[https://neodj.com /docs/cypher-manual /current /clauses /skip/]

OFFSET clause

Defines from which row to start including the rows in the output
Result set will get trimmed from the top
Same rules as for LIMIT

Skip first three
MATCH (n) RETURN n ORDER BY n.name OFFSET 3

>
>
>
>

» SKIP is an alias supported by Neo4j

W)

Node[0]{name:"D"}
Node[0]{name:"E"}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 28

Aggregation

Aggregation

[https://neodj.com/docs/cypher-manual /current /functions /aggregating/]
Group by/Aggregation

» Implicit group by (that is, there is no keyword!)

» Expressions without an aggregation function will be the group keys
» Expressions with an aggregation function will produce aggregates

» DISTINCT within the aggregation function removes duplicates in a group before the aggregation
» ALL aggregates duplicates (default)

Example

MATCH (p:Person {name: "Ann"})-->(friend:Person)-->(fof:Person)
RETURN p.name, count(DISTINCT fof), count(ALL fof), count(fof)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 29

Aggregation

[https://neodj.com/docs/cypher-manual /current /functions /aggregating/]
Group by/Aggregation

» Implicit group by (that is, there is no keyword!)

» Expressions without an aggregation function will be the group keys
» Expressions with an aggregation function will produce aggregates

» DISTINCT within the aggregation function removes duplicates in a group before the aggregation
» ALL aggregates duplicates (default)

Example

MATCH (p:Person {name: "Ann"})-->(friend:Person)-->(fof:Person)
RETURN p.name, count(DISTINCT fof), count(ALL fof), count(fof)

. ST SN p
Moo= o @ o)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 29

Aggregation

[https://neodj.com/docs/cypher-manual /current /functions /aggregating/]
Group by/Aggregation

» Implicit group by (that is, there is no keyword!)

» Expressions without an aggregation function will be the group keys
» Expressions with an aggregation function will produce aggregates

» DISTINCT within the aggregation function removes duplicates in a group before the aggregation
» ALL aggregates duplicates (default)

Example

MATCH (p:Person {name: "Ann"})-->(friend:Person)-->(fof:Person)
RETURN p.name, count(DISTINCT fof), count(ALL fof), count(fof)

Y cene— o0 > @ mame— =) Result
prame DISTINCT 2L,
W oese— T > reme= O) A3)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 29

Aggregation

[https://neodj.com /docs/cypher-manual /current /functions/aggregating/]

Some Common Aggregation Functions

Function Description

avg() Returns the average of a numeric column.

collect() Returns a list containing all collected values.

count () Returns the number of rows.

max () Returns the highest value in a numeric column.

min() Returns the lowest value in a numeric column.

percentileCont () Returns the percentile of a given value over a group using linear
interpolation.

percentileDisc() Returns the nearest value to a given percentile over a group using
a rounding method.

stDev () Returns the standard deviation for a given value over a group for a
sample of a population.

stDevP () Returns the standard deviation for a given value over a group for
an entire population.

sum() Returns the sum of a numeric column.

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

30

Composition

Query Composition

[https://neodj.com /docs/cypher-manual /current /clauses /with /]

WITH clause

» Like RETURN followed by a process pipe
» Chains subqueries together, piping the results from one to be used as starting points in the next
» Like RETURN, WITH defines — including aggregation — the output before it is passed on

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 31

Query Composition

[https://neodj.com /docs/cypher-manual /current /clauses /with /]

WITH clause

» Like RETURN followed by a process pipe
» Chains subqueries together, piping the results from one to be used as starting points in the next
» Like RETURN, WITH defines — including aggregation — the output before it is passed on

Example (Friends of five best friends)
Limit search space based on order of properties or aggregates

MATCH (p)-[f:FRIENDS]->(p2)

WITH £, p2 ORDER BY f.rating DESC LIMIT 5
MATCH (p2)-[:FRIENDS]->(p3)

RETURN DISTINCT p3

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 31

Query Composition

[https://neodj.com /docs/cypher-manual /current /clauses /with /]

WITH clause

» Like RETURN followed by a process pipe
» Chains subqueries together, piping the results from one to be used as starting points in the next
» Like RETURN, WITH defines — including aggregation — the output before it is passed on

Example (Average age of the youngest player in each team)
Aggregation of aggregates

MATCH (p:Player)-[:PLAYS]->(t:Team)
WITH t, min(p.age) AS age
RETURN avg(age)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 31

Query Composition

[https://neodj.com /docs/cypher-manual /current /clauses /with /]

WITH clause

» Like RETURN followed by a process pipe
» Chains subqueries together, piping the results from one to be used as starting points in the next
» Like RETURN, WITH defines — including aggregation — the output before it is passed on

Example (Teams whose players are on average younger than 25)
Filter on aggregates

MATCH (p:Player)-[:PLAYS]->(t:Team)
WITH t, avg(p.age) AS age WHERE age < 25
RETURN t

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 31

Query Composition — Unions

[https://neodj.com /docs/cypher-manual /current /clauses/union/]

UNION DISTINCT or UNION

Combines two query results and removes duplicates (:Actor]

MATCH (n: Actor)
RETURN n.name AS name
UNION DISTINCT

{:Actor}
MATCH (n:Movie) name:“He\en Mirren”)
RETURN n.title AS name
) {:ACTS_IN}
{:Mov1e} v
a title = "“Hitchcock”
7 3
{:ACTS_IN}

name = "Anthony Hopkins”)
{:Actor}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 32

Query Composition — Unions

[https://neodj.com /docs/cypher-manual /current /clauses/union/]

UNION DISTINCT or UNION

Combines two query results and removes duplicates {+Actor}

MATCH (n:Actor)
RETURN n.name AS name
UNION DISTINCT “Helen Mirren”
MATCH (n:Movie) - . name = “Helen Mirren”)
RETURN n.title AS name Hitchcock

“Anthony Hopkins” {:Actor}

:ACTS_IN
{:Movie} V{ }

a title = "“Hitchcock”

A
{:ACTS_IN}

name = "Anthony Hopkins”)
{:Actor}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 32

Query Composition — Unions

[https://neodj.com /docs/cypher-manual /current /clauses/union/]

UNION DISTINCT or UNION

Combines two query results and removes duplicates {+Actor}

MATCH (n:Actor)

RETURN n.name AS name “Anthony Hopkins”

UNION DISTINCT - — {:Actor}
Helen Mirren

MATCH (n:Movie) - . name = “Helen Mirren”)
RETURN n.title AS name Hitchcock
(tHovie) {:ACTS_IN}
UNION ALL . v
a title = "Hitchcock”
Combines two query results and retains duplicates [}
{:ACTS_IN}
MATCH (n:Actor) —
RETURN n.name AS name @ oo = Anthony Hopkins)
UNION ALL {:Actor}

MATCH (n:Movie)
RETURN n.title AS name

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 32

Query Composition — Unions

[https://neodj.com /docs/cypher-manual /current /clauses/union/]

UNION DISTINCT or UNION

Combines two query results and removes duplicates (:Actor]}

MATCH (n:Actor)

RETURN n.name AS name “Anthony Hopkins”

UNION DISTINCT - — {:Actor}
Helen Mirren

MATCH (n:Movie) - . name:“He\en l\/lirren”)
RETURN n.title AS name Hitchcock
(tHovie) {:ACTS_IN}
UNION ALL ‘ v
a title = "“Hitchcock”
Combines two query results and retains duplicates [}
| name | e
MATCH (n:Actor) —— -
RETURN n.name AS name Anthony Hopkins @ =ene = Antrony Fopkins)
UNION ALL “Helen Mirren” {:Actor}
MATCH (n:Movie) “Hitchcock”
RETURN n.title AS name “Hitchcock”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 32

Lists

Lists

[https://neodj.com /docs/cypher-manual /current /values-and-types/lists/]

{Person} {Movie}
{:LIKES}

» Lists can be stored as properties
(if all elements have the same type)

name = “Lucy”

B speaks =["en”, “fr"]

title = "True Romance”
lang=["en”, “fr", “de"]

Example

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 33

Lists

[https://neodj.com /docs/cypher-manual /current /values-and-types/lists/]

{Person}

{Movie}

» Lists can be stored as properties
(if all elements have the same type)

name = “Lucy”
speaks = ["en”,

{:LIKES}

title = "True Romance”
lang=["en”, “fr", “de"]

Example

» All movies available in English and French

MATCH (m:Movie)
WHERE "en" IN m.lang AND
RETURN m.title

"fr" IN m.lang

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

“True Romance”

33

sts

[https://neodj.com /docs/cypher-manual /current /values-and-types/lists/]

{Person} {Movie}

name = “Lucy” {:LIKES}
speaks =["en”, “fr"]

» Lists can be stored as properties
(if all elements have the same type)

» All movies available in English and French

title = "True Romance”
lang=["en”, “fr", “de"]

Example

MATCH (m:Movie)

WHERE "en" IN m.lang AND "fr" IN m.lang

RETURN m.title “True Romance”

» All movies and the languages they are available in

MATCH (m:Movie) m.title language

UNWIND m.lang AS language “True Romance” ~ “en”
RETURN m.title, language “True Romance” “fr"”
“True Romance” “de”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 33

Filtering on Lists

[https://neodj.com /docs/cypher-manual /current /functions/predicate/]
name = “Alice”
Predicate Functions for Lists age =38
» Tests whether a predicate holds for all elements of this list {=KNUWS}‘
MATCH (a)-[:KNOWS]->(b) WITH a,

collect(b) AS bs name = “Charlie”
WHERE all(b IN bs WHERE b.age > a.age)

age =053
RETURN a.name

{smony:}

—_ Y
Result: Charlie 5 name = “Bob”
Bob 2 age =25
w
2
:KNOWS
v { }w o
=
name = “Daniel” 5
age =54 &
=1
S
2
\ 4
name = “Eskil”
age=41

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

34

Filtering on Lists

[https://neodj.com /docs/cypher-manual /current /functions/predicate/]

name = “Alice”
Predicate Functions for Lists age =38
» Tests whether a predicate holds for all elements of this list {=KNUWS}‘
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs name = “Charlie”

WHERE all(b IN bs WHERE b.age > a.age)

age =053
RETURN a.name

{smony:}

a.name

Result: Charlie
Bob

A

name = “"Bob”

«

{smony: }

age=25

. _ _ {:KNOWS} e

> Tests whether a predicate holds for at least one element in the list y y Z

name = “Daniel” 5

MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs age =54 =

WHERE any(b IN bs WHERE b.age < a.age) :éi
RETURN a.name

a.name \ 4
Result: - name = “Eskil"”
ice D
age=41

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 34

Filtering on Lists Cont’d

[https://neodj.com /docs/cypher-manual /current /functions/predicate/]

name = “Alice”
Predicate Functions for Lists age =38
» Tests whether a predicate holds for exactly one element in the list {=KNUWS}‘
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs name = “Charlie”

WHERE single(b IN bs WHERE b.

{smony:}

age < a.age) age =53
RETURN a.name
a.name
Resulr: R _ !
lice a name = “Bob”
2 age =25
7
2
:KNOWS
A 4 { }w o
=
name = “Daniel” 5
age=>54 et
=
[S]
>
4
name = “Eskil”
age=41

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

35

Filtering on Lists Cont’d

[https://neodj.com /docs/cypher-manual /current /functions/predicate/]

name = “Alice”
Predicate Functions for Lists age =38
» Tests whether a predicate holds for exactly one element in the list {=KNUWS}‘
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs name = “Charlie”

WHERE single(b IN bs WHERE b.age < a.age)

age =053
RETURN a.name

{smony:}

a.name
Result: - -~ A 4
lice z name = "Bob"
2 age =25
w0
. . . R
» Tests whether a predicate holds for no element in the list ! {:KNOWS}‘ N
MATCH (a)-[:KNOWS]->(b) WITH a, collect(b) AS bs name — “Daniel” ;3;
WHERE none(b IN bs WHERE b.age < a.age) age =54 %
=
RETURN a.name g
Result: Charlie v
Bob name = "Eskil”
age=41
Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

35

Paths

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

36

Path Variables

[https://neodj.com /docs/cypher-manual /current /clauses /match /#find-paths]

Path Variables

» Matched paths can be assigned to variables for further processing
» UNWIND can be used to access nodes and edges on the path

» Paths can be returned

Example
MATCH p = (a:Author)-[:WROTE]->(:Post) ((:Post)-[:REPLY_TO]->(:Post))+

UNWIND nodes(p) AS post
RETURN p, post.date

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 37

Path Variables

[https://neodj.com /docs/cypher-manual /current /clauses /match /#find-paths]

Path Variables

» Matched paths can be assigned to variables for further processing
» UNWIND can be used to access nodes and edges on the path

» Paths can be returned

Example
MATCH p = (a:Author)-[:WROTE]->(:Post) ((:Post)-[:REPLY_TO]->(:Post))+

UNWIND nodes(p) AS post
RETURN p, post.date

» When working with path pattern care should to be taken: they easily match a large number of
paths (exponential blow-up)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 37

[https://neo4j.com/docs/cypher-manual /current/patterns /shortest-paths/]

Shortest Paths
» Path between two nodes with minimum number of edges
Example

» Match all shortest paths

MATCH p = ALL SHORTEST
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 38

[https://neo4j.com/docs/cypher-manual /current/patterns /shortest-paths/]

Shortest Paths

» Path between two nodes with minimum number of edges

Example

» Match all shortest paths

MATCH p = ALL SHORTEST
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

» Are the queries above and below equivalent?

MATCH p = ALL SHORTEST (start:City)-[:TRAIN]->+(dest:City)
WHERE start.name = "Lyon" AND dest.name = "Berlin"
RETURN p

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 38

[https://neo4j.com/docs/cypher-manual /current/patterns /shortest-paths/]

Shortest Paths

» Path between two nodes with minimum number of edges

Example

» Match all shortest paths

MATCH p = ALL SHORTEST
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

» Are the queries above and below equivalent?

MATCH p = ALL SHORTEST (start:City)-[:TRAIN]->+(dest:City)
WHERE start.name = "Lyon" AND dest.name = "Berlin"
RETURN p
» No, for the second query all shortest paths between any two cities are computed and then filtered

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 38

[https://neodj.com/docs/cypher-manual /current/patterns/shortest-paths/]
Shortest Paths — Variants
Example

» Match the top k shortest paths

MATCH p = SHORTEST 5
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 39

test Paths

[https://neo4j.com/docs/cypher-manual /current/patterns /shortest-paths/]

Shortest Paths — Variants
Example

» Match the top k shortest paths

MATCH p = SHORTEST 5
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

» Match an arbitrary shortest path (same as SHORTEST 1)

MATCH p = ANY
(start:City {name: "Lyon"})-[:TRAIN]->+(dest:City {name: "Berlin"})
RETURN p

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 39

	Matching, Filtering, Result Definition
	Aggregation
	Composition
	Lists
	Paths

