Big Graph Processing Systems

Part Il: Property Graphs
» Chapter 2: Schemas and Constraints

Christopher Spinrath
CNRS — LIRIS — Lyon 1 Université

DISS Master 2025

This presentation is an adaption of slides from Angela Bonifati

UNIVERSITE

L|R|S LYON 1

Schemas?

Logical Schema of a Database

» A schema describes the structure or/and is a blueprint
for database instances in a formal language

» this lecture

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 1

Schemas?

Logical Schema of a Database

» A schema describes the structure or/and is a blueprint
for database instances in a formal language

» this lecture

Physical Schema of a Database

» A physical schema describes how a database is represented and stored
(data structures, in memory, on disk, in files)

» Bonifati, G. H. L. Fletcher, et al., Querying Graphs, 2018, Chapter 6

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 1

Why do we need Schemas for Property Graphs

1. Data exploration

» letting the user making sense of the data
without delving into the intricacies of the
graph instances

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2

Why do we need Schemas for Property Graphs

1. Data exploration

» letting the user making sense of the data
without delving into the intricacies of the
graph instances

2. Data visualization

» visualizing a smaller graph (i.e. the
schema) instead of visualizing the entire
graph (i.e. the instance)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2

Why do we need Schemas for Property Graphs

1. Data exploration

» letting the user making sense of the data
without delving into the intricacies of the
graph instances

2. Data visualization

» visualizing a smaller graph (i.e. the
schema) instead of visualizing the entire
graph (i.e. the instance)

3. Query formulation

» formulating a query by selecting the
schema concepts instead of navigating
labels/set of properties in the instance

» accessing the instance only for
formulating the predicates (constants).

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Why do we need Schemas for Property Graphs

1. Data exploration 4. Query optimization
» letting the user making sense of the data » a query that retrieves nodes connected by
without delving into the intricacies of the a path might be optimized by using the
graph instances schema elements of the path (labels of

the vertices of the paths and labels of the

2. Data visualization edges are in the schema)

» visualizing a smaller graph (i.e. the
schema) instead of visualizing the entire
graph (i.e. the instance)

3. Query formulation

» formulating a query by selecting the
schema concepts instead of navigating
labels/set of properties in the instance

» accessing the instance only for
formulating the predicates (constants).

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2

Why do we need Schemas for Property Graphs

1. Data exploration 4. Query optimization
» letting the user making sense of the data » a query that retrieves nodes connected by
without delving into the intricacies of the a path might be optimized by using the
graph instances schema elements of the path (labels of

_ o the vertices of the paths and labels of the
2. Data visualization edges are in the schema)
» visualizing a smaller graph (i.e. the

schema) instead of visualizing the entire 5. Graph transformations

graph (i.e. the instance) » mappings between different graph
_ databases are guided by the schemas
3. Query formulation (source and target schemas)

» formulating a query by selecting the
schema concepts instead of navigating
labels/set of properties in the instance

» accessing the instance only for
formulating the predicates (constants).

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2

Why do we need Schemas for Property Graphs

1. Data exploration 4. Query optimization
» letting the user making sense of the data » a query that retrieves nodes connected by
without delving into the intricacies of the a path might be optimized by using the
graph instances schema elements of the path (labels of

_ o the vertices of the paths and labels of the
2. Data visualization edges are in the schema)
» visualizing a smaller graph (i.e. the

schema) instead of visualizing the entire 5. Graph transformations

graph (i.e. the instance) » mappings between different graph
_ databases are guided by the schemas
3. Query formulation (source and target schemas)

» formulating a query by selecting the
schema concepts instead of navigating 6. Data Integration, Data Quality
labels/set of properties in the instance » graph database sources to be integrated
» accessing the instance only for _
formulating the predicates (constants). /- Data Quality
» monitor graph database for quality

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Schemas for Graphs: A Fragmented Landscape

ER Models Graph Schemas
» Chen ER — P ~ » GraphQL
» Extended ER » openCypher
> Enhanced ER > SQL/PGQ
» ORM2
» UML Class Diagram
& (Limited) Schemas in
RDF Schemas Graph DBs @ DB
» RDFS » AgensGraph
» OWL » ArangoDB [.
" et " Darsax @neoy)
» ShEx » JanusGraph .
» Nebula Graph/nGQL
Tree-shaped Schemas . Neo:j raph/nGQ % TigerGraph
» DTD/XML Schema </> > Oracle/PGQL _—
» JSON Schema XML > OrientDB/SQL » TigerGraph/GSQL
RELAX NG
> > Sparksee » TypeDB/TypeQL

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 3

The Design of Property Graph Schemas

{:Account} {:Customer}
:owns

(name: STRING J——(

{:Person}

is_a
id: INT32) - = -p{(name: STRING

Towards GQL-Compliant
Property Graph Schemas

{:whitdraws}

{:deposits}

{:charges}

»{ num: STRING
amount: DOUBLE
{:Transaction}

{:CreditCard}

Support of Schemas in Contemporary Graph Databases

Limited Support of Schemas in Contemporary Graph Databases

» Graph databases are mainly schema-less

» No a priori schema constraints
» Thus, error-prone data integration and metadata management

» 11 graph databases are reviewed in the paper [PGS23]

» AgensGraph, ArangoDB, DataStax, JanusGraph, Nebula Graph/nGQL, Neo4j, Oracle/PGQL,
OrientDB/SQL, Sparksee, TigerGraph/GSQL, TypeDB/TypeQL

» Need of a consensus on design requirements of PG Schemas

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

The Quest for Schemas i

» Design of Cypher-like property graph schemas in 2019
» Activity carried out in collaboration with Neo4j [BF19] » w = m
|

ypherter

. /\///

T mT—=
@ —— CYPHER — Ea’f I / | e
S // \ \ / = =
= "
L I1SONEC
o
e

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 5

https://ldbcouncil.org/gql-community/pgswg/
https://www.gqlstandards.org/

The Quest for Schemas in Graph Databases

» Design of Cypher-like property graph schemas in 2019

» Activity carried out in collaboration with Neo4j [BF19] 8 - = = .

= | =
» Schema support is limited in the first version of / G \//)
the GQL standard [GQL-22] \\ = N
» Ongoing ISO’s Working Group for nzéd —— CYPHER —| E‘Q'"L //’//“‘"”"i\\ =

scx

=
- aw
e]

Database Languages [GQL-ISO] //

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 5

https://ldbcouncil.org/gql-community/pgswg/
https://www.gqlstandards.org/

The Quest for Schemas in Graph Databases

» Design of Cypher-like property graph schemas in 2019

» Activity carried out in collaboration with Neo4j [BF19] 8 - = = .
= | =
» Schema support is limited in the first version of / G \//)
the GQL standard [GQL-22] \\ - Nl s
.) . neotj é// Sy =
» Ongoing ISO’s Working Group for @ —— CYPHER —| GQL / \s =

» Focus on design of a standard schema
language for property graphs in 2023
» Activity carried out within the LDBC community
(https://1ldbcouncil.org/gql-community/pgswg/)
» Proposal: PG-Schema [PGS23]

Database Languages [GQL-ISO]
=== // \ \ :E".%" ;

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

https://ldbcouncil.org/gql-community/pgswg/
https://www.gqlstandards.org/

PG-Schema: An Example

{:Email}

email = "akirg.jp”
il verified =2020-10-17
CREATE GRAPH TYPE messageBoard LOOSE {
// mnode types
(personType: Person {name STRING, login STRING}),
(forumType: Forum {title STRING OPEN}),
(emailType: Email {
email STRING, OPTIONAL verified DATE}),

email = "akfuji.jp”
verified =2020-07-14

{:has}

{:Person}

name = “Akira”
login = "akira"

U4 2]

// edge types
(:personType) -[hasType: has]->(:emailType),
(:personType)

-[joinedType: joined {year: INT}]->(:forumType),
(:personType)

-[moderatedType: moderated]->(:forumType),

{:Person}

{:joined} {:joined}
{:has} year=2020 year=2019
{se3ezepou: }

name = “Hyao"
login = "hkuro”

email = "hoki.nl"
verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Representing Schemas as Property Graphs

{:Email}

il = "akirg.jp"
» Idea: Represent a schema as a (small!) property graph 1017

(inherited from openCypher schemas [BF19])
» Schema nodes define node types
» Schema relations define relations allowed between types
» Properties on schema elements define sets of allowed properties

email = “akfuji.jp"”
verified =2020-07-14

{:has}

{:joined} {:joined}
{:has} year=2020 year=2019
{se3eaepou: }

email = "hoki.nl"
verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Representing Schemas as Property Graphs

» ldea: Represent a schema as a (small!) property graph
(inherited from openCypher schemas [BF19])
» Schema nodes define node types
» Schema relations define relations allowed between types
» Properties on schema elements define sets of allowed properties

{Email} {Person} {:joined}

{Forum}
email Type personType year: INT

T rene ST
email: STRING name: STRING - .
verified: DATE @ login: STRING title: STRING

{:moderated}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:has}

{:joined} {:joined}
{:has} year=2020 year=2019

{:Email}

email = “akirg.jp”
verified =2020-10-17

email = “akfuji.jp"”
verified =2020-07-14

{:Person}

name = “Akira”
login = "akira"

4 2]

{se3eaepou: }

name = “Hyao"
login = "hkuro"”

email = "hoki.nl"
verified =2021-04-12

Representing Schemas as Property Graphs

» ldea: Represent a schema as a (small!) property graph

(inherited from openCypher schemas [BF19])
» Schema nodes define node types

» Schema relations define relations allowed between types
» Properties on schema elements define sets of allowed properties

» Schema validation via graph homomorphisms!

:joined
{Email} {Person} {:] }
emailType personType
email: STRING name: STRING
verified: DATE @ login: STRING

{:moderated}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{Forum}

forumType

{:has}

{:joined} {:joined}
{:has} year=2020 year=2019

{:Email}

email = “akirg.jp”
verified =2020-10-17

email = “akfuji.jp"”
verified =2020-07-14

{:Person}

name = “Akira”
login = "akira"

4 2]

{se3eaepou: }

name = “Hyao"
login = "hkuro"”

email = "hoki.nl"
verified =2021-04-12

Property Graph Schemas — Scenarios

Three Possible Scenarios

1. Schema-First (or Prescriptive)

» schema provided during setup

2. Flexible Schema (or Descriptive)

» users can use schema as description of what is in the data

3. Partial Schema (Prescriptive and Descriptive co-exist)
» both prescriptive and descriptive are allowed on the same property graph

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 8

Prescriptive and Descriptive Schemas

Prescriptive updates

» Deletion of schema elements can be propagated to data

» We can clone schema nodes (split concepts) CoE

Schema

AN

SMO

~-

Graph
Instance

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 9

Prescriptive and Descriptive Schemas

Prescriptive updates

» Deletion of schema elements can be propagated to data

» We can clone schema nodes (split concepts) CoE
L Schema
Descriptive updates
s
» Creation of data elements can be propagated to schema
» We can merge nodes of different types SMO
<
Graph
Instance

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 9

Prescriptive and Descriptive Schemas

Prescriptive updates

» Deletion of schema elements can be propagated to data

» We can clone schema nodes (split concepts) Graph
Schema
Descriptive updates
s
» Creation of data elements can be propagated to schema
» We can merge nodes of different types SMO
<
Schema manipulation operations (SMO)
Graph
» Create: add a new node/edge types Instance

» Drop: remove some node/edge types
» Split: partition a node/edge type into more fine-grained types
» Join: merge node/edge types into more coarse-grained types

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 9

Rewriting Rules of the Form LPR

» Rewriting R given a rule P and a matching of its left-hand side L (L+P—R)

Schema update Result

imageFile: STRING
type: post

imageFile: STRING
type: {post, comment}

P 7
i Post Comment))
\
N 4
T
’ '
’ '
/! N
S h !
, '
, '
/ .
. 7
7 G
v h ’
G S type: comment ¢
/ firstName: Jose creationDate: 2010-10-30
Pie lastName: Alonso browserUsed: Safari
. HAS CREATOR type: comment
type: post imageFile: photo33711.jpg
creationDate: 2010-10-16
browserUsed: Firefox HAS CREATOR

o SVE—

'a’g‘/@

g\sa
firstName: Jane
T P Tactame: Moreay
s hv‘x

(
%,
% e %
REPLY.OF m«aﬁ
LIKES REPLY.OF

HOLVAE

S

. CM}H‘
45{\X
&

creationDate

2010-10-30
creationDate: 2010-10-30 | | browserUsed:
browserUsed: {Firefox, Safari }
{Firefox, Safari }
10

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

PG-Schemas: The Interactive Graph Exploration Use Case

Use Case Study

Step 1 Andrea connects to a data catalogue and loads the schema information
Step 2 To detect fraud, Andrea wants to identify suspicious customers
» By leveraging the schema, Andrea selects the involved schema types,
e.g. Customer, Account etc.

{:Account} {:Customer} {:Person}

{:owns} is_a
1d: INT32 } - = -»{ name: STRING)

{:whitdraws}

{:deposits}

:charges
g

num: STRING

Y

num: STRING

amount: DOUBLE
{:Transaction} {:CreditCard}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 1

PG-Schemas: The Interactive

ph Exploration Use Case

Use Case Study

Step 3 The graph explorer automatically construct a search form for customers,
including name and id (inherited from Person type in the schema)
Step 4 Andrea needs to understand connections between customers

Patterns of interest in Step 4

//Pattern 1

{:Account} {:Customer} {:Person}
. {:owns} i
(x:Customer)-[:uses]->(:CreditCard) name: STRING
<-[:uses]-(y:Customer)

is_a
1d: INT32 } - = -»{ name: STRING)
//Pattern 2

(x:Customer)-[:uses]->(:CreditCard)
<-[:charges]-(t:Transaction)
-[:charges]->(:CreditCard)
<-[:uses]-(y:Customer)

{:whitdraws}

{:deposits}

{:charges}
num: STRING

| num: STRING
amount: DOUBLE

{:Transaction} {:CreditCard}
Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

PG-Schemas: The Interactive Graph Exploration Use Case

Use Case Study

Step 5 Andrea selects the first connection pattern from Step 4 and the
schema-based application executes an efficient query to retrieve the results

Step 6 The graph explorer visualizes the results of the query and let the user
classifies the fraudulent cases

=

Chooses the first pattern in Step 5 = B
= 8 = 9 =
//Pattern 1 W w» -
(x:Customer) -[:uses]->(:CreditCard) :E =
<-[:uses]-(y:Customer) = =
/Pattern 2 _ =
(x: TtCard) (=) ??:
<-[:charge ~FTansaction) .£1 ;z =
-[:ch L} & =

:uses]-(y:Customer)
Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 13

Schema Requirements: Types

R1 Node Types

Schemas must allow for defining types for nodes that specify their labels and properties

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 14

Schema Requirements: Types

R1 Node Types

Schemas must allow for defining types for nodes that specify their labels and properties

(personType: Person { name STRING , OPTIONAL birthday DATE})
(personType: Person OPEN { name STRING , OPTIONAL birthday DATE})
(personType: Person { name STRING , OPTIONAL birthday DATE, OPEN})

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 14

Schema Requirements: Types

R1 Node Types
Schemas must allow for defining types for nodes that specify their labels and properties

(personType: Person { name STRING , OPTIONAL birthday DATE})
(personType: Person OPEN { name STRING , OPTIONAL birthday DATE})
(personType: Person { name STRING , OPTIONAL birthday DATE, OPEN})

R2 Edge Types

Schemas must allow for defining types for edges that specify their labels and properties
as well as the types of their endpoints

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 14

Schema Requirements: Types

R1 Node Types

Schemas must allow for defining types for nodes that specify their labels and properties

(personType: Person { name STRING , OPTIONAL birthday DATE})
(personType: Person OPEN { name STRING , OPTIONAL birthday DATE})
(personType: Person { name STRING , OPTIONAL birthday DATE, OPEN})

R2 Edge Types

Schemas must allow for defining types for edges that specify their labels and properties
as well as the types of their endpoints

(:personType) -[friendType: Knows & Likes {since DATE}]->(:personType)
(:personType | customerType)

-[friendType: Knows & Likes {since DATE}]->(:personType | customerType)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 14

Schema Requirements: Types Cont’d

R3 Content Types

» Schemas must support a practical repertoire of data types in content types.
» Support for GQL content types and any other sets of data types

» STRING
» DATE
» INT
» Lists
> etc.

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 15

Schema Requirements: Constraints
R4 Key Constraints
Schemas must allow for specifying key constraints M

» in particular, “primary keys”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 16

Schema Requirements: Constraints
R4 Key Constraints
Schemas must allow for specifying key constraints M

» in particular, “primary keys”

R5 Participation Constraints

Schemas must allow for specifying participation constraints (as in ER diagrams)

» e.g. nodes of a given type participate in a relationship of a given type

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 16

Schema Requirements: Constraints

R4 Key Constraints

Schemas must allow for specifying key constraints M

» in particular, “primary keys”

R5 Participation Constraints

Schemas must allow for specifying participation constraints (as in ER diagrams)
» e.g. nodes of a given type participate in a relationship of a given type

R6 Type Hierarchies

Schemas must allow for specifying type hierarchies

(salariedType: Salaried { salary INT })
(employeeType: personType & salariedType)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 16

Schema Requirements: Flexibility

R7 Evolving Data

Schemas must allow for defining node, edge, and content types with a finely-grained degree of flexibility
in the face of evolving data

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 17

Schema Requirements: Flexibility

R7 Evolving Data

Schemas must allow for defining node, edge, and content types with a finely-grained degree of flexibility
in the face of evolving data

CREATE GRAPH TYPE fraudGraphType LOOSE {
(personType: Person {name STRING, OPTIONAL birthday DATE}),
(customerType: Person & Customer {name STRING, OPTIONAL since DATE}),
(suspiciousType: Suspicious OPEN {reason STRING, OPEN}),
(:personType | customerType)
-[friendType : Knows & Likes]->(:personType | customerType)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 17

Schema Requirements: Flexibility

R7 Evolving Data

Schemas must allow for defining node, edge, and content types with a finely-grained degree of flexibility
in the face of evolving data

CREATE GRAPH TYPE fraudGraphType LOOSE {
(personType: Person {name STRING, OPTIONAL birthday DATE}),
(customerType: Person & Customer {name STRING, OPTIONAL since DATE}),
(suspiciousType: Suspicious OPEN {reason STRING, OPEN}),
(:personType | customerType)
-[friendType : Knows & Likes]->(:personType | customerType)

R8 Compositionality

Schemas must provide a fine-grained mechanism for compositions of compatible types of nodes and
edges

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 17

Schema Requirements: Usability

R9 Schema Generation

There should be an intuitive easy-to-derive constraint-free schema for each property graph
that can serve as a descriptive schema in case one is not specified.

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 18

https://www.gqlstandards.org/

Schema Requirements: Usability

R9 Schema Generation
There should be an intuitive easy-to-derive constraint-free schema for each property graph
that can serve as a descriptive schema in case one is not specified.

R10 Syntax and Semantics
The schema language must have an intuitive declarative syntax and a well-defined semantics

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

https://www.gqlstandards.org/

Schema Requirements: Usability

R9 Schema Generation

There should be an intuitive easy-to-derive constraint-free schema for each property graph
that can serve as a descriptive schema in case one is not specified.

R10 Syntax and Semantics

The schema language must have an intuitive declarative syntax and a well-defined semantics

R11 Validation
Schemas must allow efficient validation and validation error reporting

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 18

https://www.gqlstandards.org/

Schema Requirements: Usability

R9 Schema Generation
There should be an intuitive easy-to-derive constraint-free schema for each property graph
that can serve as a descriptive schema in case one is not specified.

R10 Syntax and Semantics

The schema language must have an intuitive declarative syntax and a well-defined semantics

R11 Validation

Schemas must allow efficient validation and validation error reporting

References
More details about syntax and formal semantics are available:

» Angles, Bonifati, Dumbrava, G. Fletcher, Green, et al., “PG-Schema: Schemas for Property Graphs”,
Proc. ACM Manag. Data, 2023

» Deutsch et al., “Graph Pattern Matching in GQL and SQL/PGQ",. Proceedings of SIGMOD,. 2022
» https://www.gqlstandards.org/

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 18

https://www.gqlstandards.org/

Beyond PG-Schemas: Extensibility

Range Constraints
(bookType: Book {
title STRING (100),
genre ENUM("Prose", "Poetry", "Dramatic"),
isbn STRING ~(?=(?7:\ D*\d) {10}(7:(?:\ D*\d){3})?)[-]+ })

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 19

Beyond PG-Schemas: Extensibility

Range Constraints
(bookType: Book {
title STRING (100),
genre ENUM("Prose", "Poetry", "Dramatic"),
isbn STRING ~(?=(?7:\ D*\d) {10}(7:(?:\ D*\d){3})?)[-]+ })

Complex Datatypes

STRING ARRAY {1,2}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 19

Beyond PG-Schemas: Extensibility

Range Constraints

(bookType: Book {
title STRING (100),
genre ENUM("Prose", "Poetry", "Dramatic"),
isbn STRING ~(?=(7:\ Dx\d) {10}(?7:(?:\ Dx\d){3H)7)[-]+ })

Complex Datatypes

STRING ARRAY {1,2}

Intersections and Unions for Content Types

(personType: Person
({ name STRING } | { givenName STRING , familyName STRING })

{ height (INT | FLOAT) })

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Beyond PG-Schemas: Extensibility

Range Constraints

(bookType: Book {
title STRING (100),
genre ENUM("Prose", "Poetry", "Dramatic"),
isbn STRING ~(?=(7:\ Dx\d) {10}(?7:(?:\ Dx\d){3H)7)[-]+ })

Complex Datatypes

STRING ARRAY {1,2}

Intersections and Unions for Content Types

(personType: Person
({ name STRING } | { givenName STRING , familyName STRING })

{ height (INT | FLOAT) })

Cardinality Constraints
FOR (d:Department) COUNT 2.. OF e
WITHIN (e: Employee)-[:worksIn]->(d)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

The Design of Property Graph Constraints
— = ——
e

=]
— <5
-

For Quality Control in
Graph Databases

(Angles, Bonifati, Dumbrava, G. Fletcher, Hare, et al., “PG-Keys: Keys for Property Graphs”, SIGMOD 21, 2021)

Key Constraints for Property Graphs

Keys are ... key in data management

» For identifying, referencing and constraining objects

» They are core components of PG-Schemas

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 20

Key Constraints for Property Graphs

Keys are ... key in data management

» For identifying, referencing and constraining objects

» They are core components of PG-Schemas

Example (Person Nodes)

Node representing persons
» are uniquely identified by their login ID

» can be referenced using one of their email addresses
(and it is mandatory that each person has at least one email),

of which at most one can be the preferred email

v

» have zero or more aliases which are exclusive
(i.e., no two people can share an alias)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 20

Key Constraints for Property Graphs

Keys are ... key in data management

» For identifying, referencing and constraining objects

» They are core components of PG-Schemas

Example (Forum Nodes)

Node representing forums

» are uniquely identified by their name and the person who moderates the forum

(:Person)<-[:hasModerator]-(:Forum)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 20

Key Constraints for Property Graphs

Keys are ... key in data management

» For identifying, referencing and constraining objects

» They are core components of PG-Schemas

Example (Forum Nodes)

Node representing forums

» are uniquely identified by their name and the person who moderates the forum

(:Person)<-[:hasModerator]-(:Forum)

» This is not a property-based primary key

» ldentity depends on properties, (other) nodes, and edges

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 20

mited Support for Keys in Graph Databases

Limited Support for Keys in Graph Databases

» Landscape is diverse

» Some systems offer property-based primary keys for nodes
» Other systems support uniqueness
» Other systems support mandatoriness

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 21

mited Support for Keys in Graph Databases

Limited Support for Keys in Graph Databases

» Landscape is diverse

» Some systems offer property-based primary keys for nodes
» Other systems support uniqueness
» Other systems support mandatoriness

» Yet we need to support all of these, and more, to satisfy current practical needs

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 21

mited Support for Keys in Graph Databases

Limited Support for Keys in Graph Databases

» Landscape is diverse

» Some systems offer property-based primary keys for nodes
» Other systems support uniqueness
» Other systems support mandatoriness

» Yet we need to support all of these, and more, to satisfy current practical needs
» There is already a significant drift between database vendors

» Need to get on the same page
» Need to bring the best of academic work to the attention of industry

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 21

Scope and Descriptor

Main Ingredients of a Key

To specify a key, we have to specify
1. a scope and

2. a descriptor

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 22

Scope and Descriptor

Main Ingredients of a Key

To specify a key, we have to specify
1. a scope and

2. a descriptor

Scope

A scope is the set of all possible targets of a
constraint

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 22

Scope and Descriptor

Main Ingredients of a Key Example (Forum Nodes)
To specify a key, we have to specify Node representing forums
1. a scope and » are uniquely identified by their name
2. a descriptor » and the person who moderates the forum

(:Person)<-[:hasModerator]-(:Forum)

Scope

A scope is the set of all possible targets of a
constraint

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 22

Scope and Descriptor

Main Ingredients of a Key Example (Forum Nodes)
To specify a key, we have to specify Node representing forums
1. a scope and » are uniquely identified by their name
2. a descriptor » and the person who moderates the forum

(:Person)<-[:hasModerator]-(:Forum)
Scope

A scope is the set of all possible targets of a » The scope is the set of all nodes representing forums
constraint

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 22

Scope and Descriptor

Main Ingredients of a Key Example (Forum Nodes)
To specify a key, we have to specify Node representing forums
1. a scope and » are uniquely identified by their name
2. a descriptor » and the person who moderates the forum

(:Person)<-[:hasModerator]-(:Forum)

Scope

A scope is the set of all possible targets of a » The scope is the set of all nodes representing forums
constraint

Descriptor

Determines key values for each target in the
scope

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 22

Scope and Descriptor

Main Ingredients of a Key Example (Forum Nodes)
To specify a key, we have to specify Node representing forums
1. a scope and » are uniquely identified by their name
2. a descriptor » and the person who moderates the forum

(:Person)<-[:hasModerator]-(:Forum)

Scope

A scope is the set of all possible targets of a » The scope is the set of all nodes representing forums
constraint

Descriptor

Determines key values for each target in the » The descriptor assigns every node representing a
scope forum a unique pair of
» a name, and

» a person (moderating it)
Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 22

FOR x WITHIN x

IDENTIFIER y, z WITHIN

N
Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 23

FOR x WITHIN x

IDENTIFIER y, z WITHIN

-

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Design requirements

1.

Flexible choice of key
scope and descriptor of
key values

. Keys for nodes, edges, and

properties

. ldentify, reference, and

constrain objects

Easy to validate

23

Flexible Choice of Scope and Key Values

. R {:Email}
Flexible Choice of Scope and Key Values mail— akirgp”
verified =2020-10-17

» Declaratively specify the scope and descriptor of the key

» In your favourite query language (a parameter of PG-Keys)
» Here we use a GQL-like syntax

email = “akfuji.jp"”
verified =2020-07-14

{:has}

{:Person}

I:p 2]

login = "akira"

. pre—g

{:Person}

{:joined} {:joined}
{se3exepou: }

{:has} year=12020 year=2019

email = "hoki.nl"
verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 24

Flexible Choice of Scope and Key Values

. R {:Email}
Flexible Choice of Scope and Key Values mail— akirgp”
verified =2020-10-17

» Declaratively specify the scope and descriptor of the key

» In your favourite query language (a parameter of PG-Keys)

E email = “akfuji.jp"”
. = verified = 2020-07-14
» Here we use a GQL-like syntax -
{:Person} I;W\
Example (Person Nodes) o Wl nene="Akira" /T
b § login = "akira" -
" P s . s s .
Each person is identified by their login :gﬂg g
oo ©
FOR p WITHIN (p:Person) IDENTIFIER p.login o X zene = Databases) B
pel :P
%g {:Person}
-
n
G

email = "hoki.nl"
verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 24

Flexible Choice of Scope and Key Values

Flexible Choice of Scope and Key Values -

email = “akirg.jp”
verified =2020-10-17

» Declaratively specify the scope and descriptor of the key

» In your favourite query language (a parameter of PG-Keys)
» Here we use a GQL-like syntax

email = “akfuji.jp"”
verified =2020-07-14

{:has}

{:Person}

Example (Person Nodes)

I:p 2

name = “Akira”
login = "akira"

“Each person is identified by their login”

FOR p WITHIN (p:Person) IDENTIFIER p.login [y ane = “Databases”)
{:Person}

name = “Hyao"
login = "hkuro"”

{se3exepou: }

Example (Forum Nodes)

{:joined} {:joined}

{:has} year=12020 year=2019

“Each forum with a member is identified by its name and moderator”

FOR f WITHIN (f:Forum)<-[:joined]-(:Person) -
IDENTIFIER f.name, p WITHIN (f)<-[:moderates]-(p:Person) email = hoki 1|

verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 24

Keys for Nodes, Edges, and Properties

Keys for Nodes, Edges, and Properties LiEneit)

email = “akirg.jp”
verified =2020-10-17

» The scope query selects a set of nodes, edges, or property values

email = “akfuji.jp"”
verified =2020-07-14

{:has}

{:joined} {:joined}
{se3exepou: }

{:has} year=2020 year=2019

email = "hoki.nl"
verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 25

Keys for Nodes, Edges, and Properties

Keys for Nodes, Edges, and Properties
» The scope query selects a set of nodes, edges, or property values
Example (Person Nodes)

“Each node labelled :person is identified by the value of property login”

FOR p WITHIN (p:Person) IDENTIFIER p.login

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:has}

{:joined} {:joined}
{:has} year=2020 year=2019

{:Email}
email = “akirg.jp”
verified =2020-10-17

email = “akfuji.jp"”
verified =2020-07-14

l:p 2]

{se3exepou: }

name = “Hyao"
login = "hkuro"”

email = "hoki.nl"
verified =2021-04-12

25

Keys for Nodes, Edges, and Properties

Keys for Nodes, Edges, and Properties LiEneit)

email = “akirg.jp”
verified =2020-10-17

» The scope query selects a set of nodes, edges, or property values

Example (Person Nodes) email ="akfuji jp"

verified =2020-07-14

{:has}

“Each node labelled :person is identified by the value of property login”

{:Person}

l:p 2]

name = “Akira”
login = "akira"

FOR p WITHIN (p:Person) IDENTIFIER p.login

Example (Joined Relationships)

{:Person}

{se3exepou: }

“Each edge labelled :joined is identified by its endpoints”

» i.e., no other edge labelled :joined has the same endpoints,

{:joined} {:joined}

{:has} year=2020 year=2019

name = "Hyao"

» so a person cannot join the same forum twice Llogin = "hkuro"

FOR e WITHIN (:Person)-[e:joined]->(:Forum) it S
IDENTIFIER p, f WITHIN (p:Person)-[e:joined]->(f:Forum) o

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 25

Identify, Reference, and Constrain Objects

{:Email}
email = “akirg.jp”
verified =2020-10-17

Identify, Reference, and Constrain Objects

» Unique identification can be expressed with the qualifier IDENTIFIER

email = “akfuji.jp"”

Example (Forum Nodes) verified = 2020-07-14

{:has}

FOR f WITHIN (f:Forum)<-[:joined]-(:Person) {:Person}

name = “Akira”

& 2

IDENTIFIER f.name, p WITHIN (f)<-[:moderates]-(p:Person) =32 ORI
gg ogln = akira .
| 5
o 2
oF 3 :
:
_~
LS o
Q 8 J\’"‘
-E I {:Person}
w § name = “Hyao"
R login = "hkuro"”
—~—
w
o
<
=

email = "hoki.nl"
verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 26

Identify, Reference, and Constrain Objects

{:Email}
email = “akirg.jp”
verified =2020-10-17

Identify, Reference, and Constrain Objects

» Unique identification can be expressed with the qualifier IDENTIFIER

w email = “akfuji.jp”
Example (Forum Nodes) fi verified =2020-07-14
FOR f WITHIN (f:Forum)<-[:joined]-(:Person) {:Person} é?
IDENTIFIER f.name, p WITHIN (f)<-[:moderates]-(p:Person) 2 name = "Akira” /o0
g 3 login = "akira -
| 1
IDENTIFIER is the combination of the qualifiers ke g
» EXCLUSIVE — no two targets in the scope can have the same key value =& e
g o . ~
» MANDATORY — each target in the scope has at least one key value 3 [Person]
= 9 nam?: riyao .
» SINGLETON — each target in the scope has at most one key value - Login = "hkuro
3
=]

email = "hoki.nl"
verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 26

Identify, Reference, and Constrain Objects

{:Email}
email = “akirg.jp”
verified =2020-10-17

Identify, Reference, and Constrain Objects

» Unique identification can be expressed with the qualifier IDENTIFIER

o pSrE—
Example (Forum Nodes) £ | Gl verizioa—2020.07.14
FOR f WITHIN (f:Forum)<-[:joined]-(:Person) {:Person} é?
IDENTIFIER f.name, p WITHIN (f)<-[:moderates]-(p:Person) 2 name = "Akira® /6T
g 3 login = "akira -
o Il 1
IDENTIFIER is the combination of the qualifiers ke g
» EXCLUSIVE — no two targets in the scope can have the same key value =& e
g o . ~
» MANDATORY — each target in the scope has at least one key value 3 [Person]
- 9 nam?: riyao .
» SINGLETON — each target in the scope has at most one key value - Login = "hkuro
2
In SQL, EXCLUSIVE is UNIQUE, MANDATORY is NOT NULL, and SINGLETON is - email = "“hoki.nl"

always ensured by 1NF. For property graphs, all three are required. verified =207 04 17

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 26

Easy to Validate

Easy to Validate

» To check that a PG-Key holds, we can run queries to find violations
Example
The key constraint

FOR p WITHIN (p:Person)
EXCLUSIVE MANDATORY e WITHIN (p)-[:has]-(e:Email)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

{:Email}
email = “akirg.jp”
verified =2020-10-17

email = “akfuji.jp"”
verified =2020-07-14

{:has}
I8
{se3exepou: } 1765-/1

{:joined} {:joined}
{:has} year=2020 year=2019

email = "hoki.nl"
verified =2021-04-12

27

Easy to Validate

Easy to Validate {:Enail)

email = “akirg.jp”
verified =2020-10-17

» To check that a PG-Key holds, we can run queries to find violations

Example [W emai1 = akujijp”
) verified =2020-07-14
The key constraint
Y {:Person} (;h\
FOR p WITHIN (p:Person) 2 pame = Al 5
EXCLUSIVE MANDATORY e WITHIN (p)-[:has]-(e:Email) 24 i A
Loy 8
holds if if both queries return no answers A%] - Y
MATCH (pl:Person)-[:has]->(:Email)<-[:has]-(p2:Person) EIR‘ p) =
- :Person
WHERE pl <> p2 RETURN pl, p2 £y p————
e login = "hkuro"”
MATCH (p:Person) 0
WHERE NOT EXISTS (pl:Person)-[:has]->(:Email))

email = "hoki.nl"
verified =2021-04-12

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 27

Easy to Validate

o :Email

Easy to Validate {iEmail})
email = “akirg.jp
verified =2020-10-17

» To check that a PG-Key holds, we can run queries to find violations

Example

il email = “akfujijp”
verified =2020-07-14

{:has}

The key constraint

{:Person}

l:p 2]

FOR p WITHIN (p:Person)
EXCLUSIVE MANDATORY e WITHIN (p)-[:has]-(e:Email)

name = “Akira”
login = "akira”

holds if if both queries return no answers

{:Person}

name = “Hyao"
login = "hkuro"”

{se3exepou: }

MATCH (pl:Person)-[:has]->(:Email)<-[:has]-(p2:Person)
WHERE p1 <> p2 RETURN pl, p2

{:joined} {:joined}
{:has} year=2020 year=2019

MATCH (p:Person)
WHERE NOT EXISTS (pl:Person)-[:has]->(:Email)

email = "hoki.nl"

. o . verified =2021-04-12
Incremental validation or batching will require additional mechanisms

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 27

References

ﬁ Angles, Renzo, Angela Bonifati, Stefania Dumbrava, George Fletcher, Alastair Green, Jan Hidders,
Bei Li, Leonid Libkin, Victor Marsault, Wim Martens, Filip Murlak, Stefan Plantikow,

Ognjen Savkovic, Michael Schmidt, Juan Sequeda, Slawek Staworko, Dominik Tomaszuk,
Hannes Voigt, Domagoj Vrgoc, Mingxi Wu, and Dusan Zivkovic (June 20, 2023). "PG-Schema:
Schemas for Property Graphs”. In: Proc. ACM Manag. Data, pp. 1-25. DOI: 10.1145/3589778.

@ Angles, Renzo, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W. Hare, Jan Hidders,
Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip Murlak, Josh Perryman, Ognjen Savkovic,
Michael Schmidt, Juan F. Sequeda, Slawek Staworko, and Dominik Tomaszuk (2021). “PG-Keys:
Keys for Property Graphs”. In: SIGMOD °'21. Ed. by Guoliang Li, Zhanhuai Li, Stratos Idreos, and
Divesh Srivastava. ACM, pp. 2423-2436. pDOI: 10.1145/3448016.3457561.

@ Bonifati, Angela, George H. L. Fletcher, Hannes Voigt, and Nikolay Yakovets (2018). Querying
Graphs. Synthesis Lectures on Data Management. Morgan & Claypool Publishers. DOT:
10.2200/S00873ED1V01Y201808DTM051. URL:
https://doi.org/10.2200/S00873ED1V01Y201808DTMO51.

https://doi.org/10.1145/3589778
https://doi.org/10.1145/3448016.3457561
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051

@ Bonifati, Angela, Peter Furniss, Alastair Green, Russ Harmer, Eugenia Oshurko, and Hannes Voigt
(2019). “Schema Validation and Evolution for Graph Databases”. In: ER 2019. Ed. by
Alberto H. F. Laender, Barbara Pernici, Ee-Peng Lim, and José Palazzo M. de Oliveira. Vol. 11788.
Lecture Notes in Computer Science. Springer, pp. 448-456. DOT:
10.1007/978-3-030-33223-5_37. URL:
https://doi.org/10.1007/978-3-030-33223-5%,5C_37.

@ Deutsch, Alin, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias Lindaaker,
Victor Marsault, Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow, Petra Selmer,
Oskar Van Rest, Hannes Voigt, Domagoj Vrgo¢, Mingxi Wu, and Fred Zemke (June 10, 2022).
“Graph Pattern Matching in GQL and SQL/PGQ". In: Proceedings of SIGMOD. SIGMOD/PODS
'22: International Conference on Management of Data. Philadelphia PA USA: ACM, pp. 2246-2258.
DOI: 10.1145/3514221.3526057. URL:
https://dl.acm.org/doi/10.1145/3514221.3526057 (visited on 03/19/2024).

https://doi.org/10.1007/978-3-030-33223-5_37
https://doi.org/10.1007/978-3-030-33223-5%5C_37
https://doi.org/10.1145/3514221.3526057
https://dl.acm.org/doi/10.1145/3514221.3526057

	The Design of Property Graph Schemas
	The Design of Property Graph Constraints
	References

