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Schema Discovery

From Big Data to the-matrix
Machine Learning



Schema Discovery

address: '2 Main Street,Lyon’
birthday: (day: 1,

— month: January,

year: 1942}

imagefile: 'pg.pog"
creationDate: '29 February"
browserUsed: Firefox

creationDate: '21 July 2009'
browserUsed: Firefox

f Retrgy »
creationdate: "05-12-2020" |/

creationDate: *12 March'

creationDate: "03-14-2020"

t

KNOWS —

browserUsed: Firefox ey
or_
creationDate: ' 14 March 2020"
browserUsed: Safari H4
L J S ey

name: *Eve’
address: ['4 Main Street,'Lyon']
birthday: {day: 11,

month: * June*,

year: 1978}

name: *Alice’
StudentNumber: 42

address: [*Market Street, 'Lyon']

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

e
AN

Output PG Schema

o /mﬂ

g
al £ \ pesent )
8 o -\ Patien ~ suype0t —
‘ RN
»

oo | (comment)

browsarused ST

address [sTanic)
Dithday: (day e,

meta_mandatory:FALSE)



Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic

» no hierarchies

» no complex types

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2


https://gitlab.com/Hgit/pgsinference
https://github.com/PI-Clustering/code

Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic

» no hierarchies

» no complex types
MRSchema: Schema inference using MapReduce on Spark
Code Base: https://gitlab.com/Hgit/pgsinference

» considers either node labels or node properties — trade-off

» property co-occurrence information loss (label-oriented approach) vs. extraneous type inference
(property-oriented approach)
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Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic

» no hierarchies

» no complex types

MRSchema: Schema inference using MapReduce on Spark

Code Base: https://gitlab.com/Hgit/pgsinference
» considers either node labels or node properties — trade-off

» property co-occurrence information loss (label-oriented approach) vs. extraneous type inference
(property-oriented approach)

Schema inference using hierarchical clustering

Code Base: https://github.com/PI-Clustering/code
» Can handle labels and properties at the same time
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Overview of the MRSchema od
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Two Variants

» Label-oriented: label sets characterize types

» Property-oriented: labels are properties, property key sets characterize types
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MRSchema — Step 1 and Step 2
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MRSchema — Step 3

Step 3: Node Hierarchies Inference (Label

Intermediate Schema
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MRSchema — Step 3

Step 3: Node Hierarchies Inference (Label-oriented variant)

» Supertype inference: Pairwise intersection of label sets

Output PG Schema
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MRSchema — Step 3

Step 3: Node Hierarchies Inference (Label-oriented variant)

» Supertype inference: Pairwise intersection of label sets

» Subtype inference: Node type with label set A is a subtype of node type with label set B if B C A
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MRSchema — Time Performances (per step)
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MRSchema — Property-Oriented Variant

Property-Oriented Variant

Labels are properties, property key sets characterize node types
Step 1: Unlabelled nodes are also matched
Step 2: Identification of property co-occurrence information but not optional properties

Step 3: Property key sets are used for subtypes and supertypes inference
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MRSchema — Label-Oriented vs. Property-Oriented Varian

Schema derived with Schema derived with
the label-oriented variant the property-oriented variant
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A New Clustering-based Method: The DiscoPG System

» Need of combining labels and properties for type inference with improved precision and recall

» Static Case: discover the schema of a static graph dataset G

» GMM-S: novel hierarchical clustering algorithm
» Based on fitting a Gaussian Mixture Model (GMM)
» Accounts for both node label & property information

» Dynamic Case: update the schema of G upon modifications

» |-GMM-D: incremental approach; reuses GMM-S clustering
» GMM-D: recomputation approach; memorization-based
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A GMM Schema Pipeline

A GMM Schema Pipeline

» Gaussian Mixture Model (GMM¥*) to discover hierarchical
node types

» For every node label, run GMM algorithm to fit a mixture of
normal distributions and use the resulting model for clustering

» Re-iterate procedure in each sub-cluster

Step 1: Step 3: :
F’éﬂrge:y Preprocessing Samplin Hierarchical —>
P (Neo4j Queries) ping Clustering !

Property
Graph
Schema
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Inferred LDBC Schema
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LDBC Schema
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https://github.com/ldbc/ldbc_snb_docs

Schema Quality wrt. Baseline (MRSchema)

MRSchema
property-oriented variant

MRSchema
label-oriented variant

GMMSchema

Dataset | Node Types | Edge Types | Subtype Edges | Hierarchy Depth
LDBC 17 72 51 5
Mbé6 68 795 786 9
Fib25 47 427 418 8

Dataset | Node Types | Edge Types | Subtype Edges | Hierarchy Depth
LDBC 7 21 0 0
Mbé 5 10 1 1
Fib25 5 10 1 1

Dataset | Node Types | Edge Types | Subtype Edges | Hierarchy Depth
LDBC 17 36 9 2
Mbé6 19 27 14 4
Fib25 26 106 21 6
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GMM Schema Discovery Runtimes wrt. Baseline
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Property Graph Transformations

A Declarative
Transformation
Framework

source-code

(DBLP:journals/pvldb/BonifatiMR24)



Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

» Schema-last approach; as opposed to the schema-first approach in SQL

» The representation of the data depends on the evolving use-cases
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Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

» Schema-last approach; as opposed to the schema-first approach in SQL

» The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)
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Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile
» Schema-last approach; as opposed to the schema-first approach in SQL
» The representation of the data depends on the evolving use-cases
Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)
2. A new piece of data may represent a complex pattern over the source data
» Defining an appropriate notion of identity is crucial
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Declarative Property Graph nsformations Are Essential

The property graph data model is flexible and agile

» Schema-last approach; as opposed to the schema-first approach in SQL

» The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)

2. A new piece of data may represent a complex pattern over the source data
» Defining an appropriate notion of identity is crucial

3. Primitives for handling data contents

» Data values may contribute to the identity of new elements
» Similarly, labels may contribute to the identity of new elements
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Declarative Property Graph nsformations Are Essential

The property graph data model is flexible and agile

» Schema-last approach; as opposed to the schema-first approach in SQL

» The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)

2. A new piece of data may represent a complex pattern over the source data
» Defining an appropriate notion of identity is crucial

3. Primitives for handling data contents

» Data values may contribute to the identity of new elements
» Similarly, labels may contribute to the identity of new elements

4. New elements may aggregate the content of past ones
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Current State

» Typical graph query languages return tuples (rows of a table)
» Hence, they cannot be composed/chained together

» A transformation should rather return a (sub)graph structure
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Current State

» Typical graph query languages return tuples (rows of a table)
» Hence, they cannot be composed/chained together

» A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

» In practical graph database systems such as Neo4;j

» Handcrafted openCypher scripts
» APOC (Awesome Procedures on Cypher)
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Current State

» Typical graph query languages return tuples (rows of a table)
» Hence, they cannot be composed/chained together
» A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

» In practical graph database systems such as Neo4;j
» Handcrafted openCypher scripts
» APOC (Awesome Procedures on Cypher)
» In the research literature
» Data exchange for graph databases
10.1145/2448496.2448520
10.1145/3034786.3056113
» Graph databases transformations
10.1145/3584372.3588654
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Current State

» Typical graph query languages return tuples (rows of a table)
» Hence, they cannot be composed/chained together
» A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

» In practical graph database systems such as Neo4;j
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Property Graph sformations

Declarative Specifications

.. have been recognized as pivotal for solving data programmability problems
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Property Graph sformations

Declarative Specifications

.. have been recognized as pivotal for solving data programmability problems

New Framework for Property Graph Transformations

Code Base: https://github.com/yannramusat/DTGraph/
» Declarative; rule-based
» Intuitive and expressive
» Efficiently implementable in practical graph database systems

» openCypher extension and theoretical foundations (GPC)
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https://github.com/yannramusat/DTGraph/

raph — An Example of the GENERATE clause

{:PRODUCED}

Input Schema

{:DIRECTED}

name: STRING
born: DATE

{:Person} »(title: STRING ) {:Movie}

{:ACTED_IN}
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raph — An Example of the GENERATE clause

{:PRODUCED}

Input Schema

{:DIRECTED}

name: STRING
born: DATE

{:Person} »(title: STRING ) {:Movie}

{:ACTED_IN}
Transformation rules are openCypher scripts extended by the GENERATE clause
MATCH (n:Person)-[:ACTED_IN]->(:Movie)

GENERATE (x = (n):Actor { x.name = n.name, x.born = n.born })

» (n) is the identifier of the (potentially!) new node x
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raph — An Example of the GENERATE clause

{:PRODUCED}

Input Schema

{:DIRECTED}

name: STRING
born: DATE

{:Person} »(title: STRING ) {:Movie}

{:ACTED_IN}

Transformation rules are openCypher scripts extended by the GENERATE clause
MATCH (n:Person)-[:ACTED_IN]->(:Movie)
GENERATE (x = (n):Actor { x.name = n.name, x.born = n.born })
» (n) is the identifier of the (potentially!) new node x
MATCH (n:Person)-[:DIRECTED]->(:Movie)

GENERATE (x = (n):Director { x.name = n.name, x.born = n.born })

» Together these rules can generate nodes which have two labels: Actor and Director
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DTGraph — Another Ex

Example

MATCH (u:User), (a:Address), (w:Location)

WHERE u.address = a.aid AND u.address = w.aid

GENERATE ((u) :Person {name = u.name})-[:HasLocation]->
((w.countryName) : Country {name=w.countryName, code=w.countryCodel})

{:User} {:User}
ean” Pl name = “Robert”
Bl 2ddress = addr::8bc3

{:Address}
aid=addr:8bc3

aid =addr::abef
cityName = "Luxemburg”
cityCode = 1457

cityName = “Luxemburg”
cityCode = 1457

{:Location} {:Location}
aid = addr::abef aid =addr::8bc3
V29l countryName = "Luxemburg” VY29 countryName = “United States”
countryCode = LUX countryCode = USA
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DTGraph — Another Example

Example

MATCH (u:User),
WHERE u.address

{:User}
name Jean”
address = addr::abef

{:Address}

aid =addr::abef

cityName = "Luxemburg”
cityCode = 1457

{:Location}

(a:Address),
a.aid AND u.address
GENERATE ((u) :Person {name = u.name})-[:HasLocation]->
((w.countryName) : Country {name=w.countryName,
((u) :Person {name = u.namel})-[:HasAddress]->
((a.cityName) :City {name=a.cityName, code=a.cityCodel)

{:User}

name = "Robert”
Bl 2ddress = addr::8bc3

{:Address}
aid=addr:8bc3

cityName = “Luxemburg”
cityCode = 1457

{:Location}

(w:Location)

code=w.countryCode}),

aid = addr::abef

V29l countryName = "L uxemburg

countryCode = LUX

aid =addr::8bc3
countryName = “United States”
countryCode = USA
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DTGraph — Another Example

Example

MATCH (u:User), (a:Address), (w:Location)

WHERE u.address = a.aid AND u.address = w.aid

GENERATE ((u) :Person {name = u.name})-[:HasLocation]->
((w.countryName) : Country {name=w.countryName, code=w.countryCode}),
((u) :Person {name = u.namel})-[:HasAddress]->
((a.cityName) :City {name=a.cityName, code=a.cityCodel)

{:Person}

{:User} {:User}

. prS— {:HasLocation, :HasAddress}
ean U name — ober

address = addr::abef Bl 2ddress = addr::8bc3 { :City, : Country}
{:Address} {:Address} ~ name = "“Luxemburg”
aid = addr::abef aid=addr:8bc3 éaz code =777
cityName = "Luxemburg” cityName = “Luxemburg” i .é/
i = i =145 (] ="“Uni "
cityCode = 1457 cityCode 57 (}. ed States?) name United States
v code = USA
{:Location} {:Location} b

aid = addr::8bc3 {:Country}

VY29 countryName = “United States”
countryCode = USA

aid = addr::abef
V29l countryName = "Luxemburg”

countryCode = LUX { :HaSLocatlon}

name = “Robert”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati



DTGraph — User Study

User Study

» 12 participants, all already familiar with openCypher

Comparison of the Ability to Understand ...

» .. manual transformations with handcrafted openCypher scripts, and ..
» .. transformations with GENERATE clauses

» in clearly defined scenarios

Outcome
» Only 25% of the participants have been able to fully understand the behaviour of the openCypher
scripts, whereas 67% of them succeeded with GENERATE clause transformations
» On average, they scored 50% on openCypher scripts and 90% on GENERATE clause transformations

» Participants have favoured GENERATE clauses by a great margin in terms of understandability,
intuitiveness, and flexibility
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DTGraph — System Overview

System Overview

Parses E It
transformation Gg nehrates ot Backc;elnd transxf?)‘r:rk':lztsions gr?p:
rules opentypher scripts LS with conflict detection atabase

Inspects metadata

Writes declarative specifications Inspects the output
of transformations

» open-source Python3 package; Neo4j Driver
» compatible with Neo4j and Memgraph

» Available at: https://github.com/yannramusat/DTGraph/
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Conclusion




Graph Queries, Schemas and Transformations

Several Challenges are Still Ahead of Us

v

Graph-to-graph transformations (schema correspondences, schema mappings)
» Schema discovery methods leveraging ML
Entity alignment for property graphs

v

» Data cleaning for property graphs
» Indexes for dynamic and streaming graphs
» Data quality for streaming graphs
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