
Big Graph Processing Systems
Part II: Property Graphs
I Chapter 3: Schema Discovery and Property Graph Transformations

Christopher Spinrath
CNRS – LIRIS – Lyon 1 Université

DISS Master 2025

This presentation is an adaption of slides from Angela Bonifati

Schema Discovery

From Big Data to
Machine Learning

the-matrix

Schema Discovery

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 1

Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic
KellouMenouer2022

I no hierarchies
I no complex types

MRSchema: Schema inference using MapReduce on Spark
Lbath2021
Code Base: https://gitlab.com/Hgit/pgsinference

I considers either node labels or node properties → trade-off
I property co-occurrence information loss (label-oriented approach) vs. extraneous type inference

(property-oriented approach)

Schema inference using hierarchical clustering
Bonifati2022
Code Base: https://github.com/PI-Clustering/code

I Can handle labels and properties at the same time

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 2

https://gitlab.com/Hgit/pgsinference
https://github.com/PI-Clustering/code

Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic
KellouMenouer2022

I no hierarchies
I no complex types

MRSchema: Schema inference using MapReduce on Spark
Lbath2021
Code Base: https://gitlab.com/Hgit/pgsinference

I considers either node labels or node properties → trade-off
I property co-occurrence information loss (label-oriented approach) vs. extraneous type inference

(property-oriented approach)

Schema inference using hierarchical clustering
Bonifati2022
Code Base: https://github.com/PI-Clustering/code

I Can handle labels and properties at the same time

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 2

https://gitlab.com/Hgit/pgsinference
https://github.com/PI-Clustering/code

Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic
KellouMenouer2022

I no hierarchies
I no complex types

MRSchema: Schema inference using MapReduce on Spark
Lbath2021
Code Base: https://gitlab.com/Hgit/pgsinference

I considers either node labels or node properties → trade-off
I property co-occurrence information loss (label-oriented approach) vs. extraneous type inference

(property-oriented approach)

Schema inference using hierarchical clustering
Bonifati2022
Code Base: https://github.com/PI-Clustering/code

I Can handle labels and properties at the same time
Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 2

https://gitlab.com/Hgit/pgsinference
https://github.com/PI-Clustering/code

Overview of the MRSchema Method

Two Variants

I Label-oriented: label sets characterize types
I Property-oriented: labels are properties, property key sets characterize types

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 3

MRSchema – Step 1 and Step 2

Step 1: Preprocessing & Cardinalities

I Convert input PG to proper format
I Infer edge cardinality constraints

Step 2: Types & Data Types
Inference (MapReduce)

I Label sets characterize types

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 4

MRSchema – Step 3

Step 3: Node Hierarchies Inference (Label-oriented variant)

I Supertype inference: Pairwise intersection of label sets
I Subtype inference: Node type with label set A is a subtype of node type with label set B if B (A

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 5

MRSchema – Step 3

Step 3: Node Hierarchies Inference (Label-oriented variant)

I Supertype inference: Pairwise intersection of label sets

I Subtype inference: Node type with label set A is a subtype of node type with label set B if B (A

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 5

MRSchema – Step 3

Step 3: Node Hierarchies Inference (Label-oriented variant)

I Supertype inference: Pairwise intersection of label sets
I Subtype inference: Node type with label set A is a subtype of node type with label set B if B (A

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 5

MRSchema – Time Performances (per step)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 6

MRSchema – Property-Oriented Variant

Property-Oriented Variant

Labels are properties, property key sets characterize node types
Step 1: Unlabelled nodes are also matched
Step 2: Identification of property co-occurrence information but not optional properties
Step 3: Property key sets are used for subtypes and supertypes inference

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 7

MRSchema – Label-Oriented vs. Property-Oriented Variant

Schema derived with
the label-oriented variant

Schema derived with
the property-oriented variant

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 8

A New Clustering-based Method: The DiscoPG System

I Need of combining labels and properties for type inference with improved precision and recall

I Static Case: discover the schema of a static graph dataset G
I GMM-S: novel hierarchical clustering algorithm
I Based on fitting a Gaussian Mixture Model (GMM)
I Accounts for both node label & property information

I Dynamic Case: update the schema of G upon modifications
I I-GMM-D: incremental approach; reuses GMM-S clustering
I GMM-D: recomputation approach; memorization-based

Bonifati2022
Bonifati2022a

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 9

A GMM Schema Pipeline

A GMM Schema Pipeline

I Gaussian Mixture Model (GMM*) to discover hierarchical
node types

I For every node label, run GMM algorithm to fit a mixture of
normal distributions and use the resulting model for clustering

I Re-iterate procedure in each sub-cluster

*Dempster1977
Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 10

Inferred LDBC Schema

Note
Base type Post has two subtypes
Post1 and Post2

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 11

LDBC Schema

©The Linked Data Benchmark Council, https://github.com/ldbc/ldbc_snb_docs, Apache-2.0 license

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 12

https://github.com/ldbc/ldbc_snb_docs

Schema Quality wrt. Baseline (MRSchema)

MRSchema
property-oriented variant

MRSchema
label-oriented variant

GMMSchema

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 13

GMM Schema Discovery Runtimes wrt. Baseline

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 14

Property Graph Transformations

A Declarative
Transformation

Framework

source-code

(DBLP:journals/pvldb/BonifatiMR24)

Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

I Schema-last approach; as opposed to the schema-first approach in SQL
I The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)
2. A new piece of data may represent a complex pattern over the source data

I Defining an appropriate notion of identity is crucial
3. Primitives for handling data contents

I Data values may contribute to the identity of new elements
I Similarly, labels may contribute to the identity of new elements

4. New elements may aggregate the content of past ones

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15

Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

I Schema-last approach; as opposed to the schema-first approach in SQL
I The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)

2. A new piece of data may represent a complex pattern over the source data
I Defining an appropriate notion of identity is crucial

3. Primitives for handling data contents
I Data values may contribute to the identity of new elements
I Similarly, labels may contribute to the identity of new elements

4. New elements may aggregate the content of past ones

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15

Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

I Schema-last approach; as opposed to the schema-first approach in SQL
I The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)
2. A new piece of data may represent a complex pattern over the source data

I Defining an appropriate notion of identity is crucial

3. Primitives for handling data contents
I Data values may contribute to the identity of new elements
I Similarly, labels may contribute to the identity of new elements

4. New elements may aggregate the content of past ones

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15

Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

I Schema-last approach; as opposed to the schema-first approach in SQL
I The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)
2. A new piece of data may represent a complex pattern over the source data

I Defining an appropriate notion of identity is crucial
3. Primitives for handling data contents

I Data values may contribute to the identity of new elements
I Similarly, labels may contribute to the identity of new elements

4. New elements may aggregate the content of past ones

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15

Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

I Schema-last approach; as opposed to the schema-first approach in SQL
I The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)
2. A new piece of data may represent a complex pattern over the source data

I Defining an appropriate notion of identity is crucial
3. Primitives for handling data contents

I Data values may contribute to the identity of new elements
I Similarly, labels may contribute to the identity of new elements

4. New elements may aggregate the content of past ones

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 15

Current State

I Typical graph query languages return tuples (rows of a table)
I Hence, they cannot be composed/chained together
I A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

I In practical graph database systems such as Neo4j
I Handcrafted openCypher scripts
I APOC (Awesome Procedures on Cypher)

I In the research literature
I Data exchange for graph databases

10.1145/2448496.2448520
10.1145/3034786.3056113

I Graph databases transformations
10.1145/3584372.3588654

None are declarative
!

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 16

Current State

I Typical graph query languages return tuples (rows of a table)
I Hence, they cannot be composed/chained together
I A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

I In practical graph database systems such as Neo4j
I Handcrafted openCypher scripts
I APOC (Awesome Procedures on Cypher)

I In the research literature
I Data exchange for graph databases

10.1145/2448496.2448520
10.1145/3034786.3056113

I Graph databases transformations
10.1145/3584372.3588654

None are declarative
!

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 16

Current State

I Typical graph query languages return tuples (rows of a table)
I Hence, they cannot be composed/chained together
I A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

I In practical graph database systems such as Neo4j
I Handcrafted openCypher scripts
I APOC (Awesome Procedures on Cypher)

I In the research literature
I Data exchange for graph databases

10.1145/2448496.2448520
10.1145/3034786.3056113

I Graph databases transformations
10.1145/3584372.3588654

None are declarative
!

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 16

Current State

I Typical graph query languages return tuples (rows of a table)
I Hence, they cannot be composed/chained together
I A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

I In practical graph database systems such as Neo4j
I Handcrafted openCypher scripts
I APOC (Awesome Procedures on Cypher)

I In the research literature
I Data exchange for graph databases

10.1145/2448496.2448520
10.1145/3034786.3056113

I Graph databases transformations
10.1145/3584372.3588654

None are declarative
!

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 16

Property Graph Transformations

Declarative Specifications
… have been recognized as pivotal for solving data programmability problems
bernstein_model_2007

New Framework for Property Graph Transformations
DBLP:journals/pvldb/BonifatiMR24
Demo: DBLP:journals/pvldb/BonifatiRMFE24
Code Base: https://github.com/yannramusat/DTGraph/

I Declarative; rule-based
I Intuitive and expressive
I Efficiently implementable in practical graph database systems
I openCypher extension and theoretical foundations (GPC)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 17

https://github.com/yannramusat/DTGraph/

Property Graph Transformations

Declarative Specifications
… have been recognized as pivotal for solving data programmability problems
bernstein_model_2007

New Framework for Property Graph Transformations
DBLP:journals/pvldb/BonifatiMR24
Demo: DBLP:journals/pvldb/BonifatiRMFE24
Code Base: https://github.com/yannramusat/DTGraph/

I Declarative; rule-based
I Intuitive and expressive
I Efficiently implementable in practical graph database systems
I openCypher extension and theoretical foundations (GPC)

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 17

https://github.com/yannramusat/DTGraph/

DTGraph – An Example of the GENERATE clause

Input Schema

name: STRING
born:DATE

{:Person} title: STRING {:Movie}

{:PRODUCED}

{:DIRECTED}

{:ACTED_IN}

Transformation rules are openCypher scripts extended by the GENERATE clause

MATCH (n:Person)-[:ACTED_IN]->(:Movie)
GENERATE (x = (n):Actor { x.name = n.name, x.born = n.born })

I (n) is the identifier of the (potentially!) new node x

MATCH (n:Person)-[:DIRECTED]->(:Movie)
GENERATE (x = (n):Director { x.name = n.name, x.born = n.born })

I Together these rules can generate nodes which have two labels: Actor and Director

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 18

DTGraph – An Example of the GENERATE clause

Input Schema

name: STRING
born:DATE

{:Person} title: STRING {:Movie}

{:PRODUCED}

{:DIRECTED}

{:ACTED_IN}

Transformation rules are openCypher scripts extended by the GENERATE clause

MATCH (n:Person)-[:ACTED_IN]->(:Movie)
GENERATE (x = (n):Actor { x.name = n.name, x.born = n.born })

I (n) is the identifier of the (potentially!) new node x

MATCH (n:Person)-[:DIRECTED]->(:Movie)
GENERATE (x = (n):Director { x.name = n.name, x.born = n.born })

I Together these rules can generate nodes which have two labels: Actor and Director

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 18

DTGraph – An Example of the GENERATE clause

Input Schema

name: STRING
born:DATE

{:Person} title: STRING {:Movie}

{:PRODUCED}

{:DIRECTED}

{:ACTED_IN}

Transformation rules are openCypher scripts extended by the GENERATE clause

MATCH (n:Person)-[:ACTED_IN]->(:Movie)
GENERATE (x = (n):Actor { x.name = n.name, x.born = n.born })

I (n) is the identifier of the (potentially!) new node x

MATCH (n:Person)-[:DIRECTED]->(:Movie)
GENERATE (x = (n):Director { x.name = n.name, x.born = n.born })

I Together these rules can generate nodes which have two labels: Actor and Director
Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 18

DTGraph – Another Example

Example
MATCH (u:User), (a:Address), (w:Location)
WHERE u.address = a.aid AND u.address = w.aid
GENERATE ((u):Person {name = u.name})-[:HasLocation]->

((w.countryName):Country {name=w.countryName , code=w.countryCode})

u1
name= “Jean”
address= addr::a5ef

{:User}

u2
name= “Robert”
address= addr::8bc3

{:User}

a1

aid= addr::a5ef
cityName= “Luxemburg”
cityCode= 1457

{:Address}

a2

aid= addr::8bc3
cityName= “Luxemburg”
cityCode= 1457

{:Address}

`1

aid= addr::a5ef
countryName= “Luxemburg”
countryCode= LUX

{:Location}

`2

aid= addr::8bc3
countryName= “United States”
countryCode=USA

{:Location}

⇒

f (u1) name= “Jean”
{:Person}

f (u2) name= “Robert”
{:Person}

f (“Luxemburg”) name= “Luxemburg”
code= ???

{:City, :Country}

f (“United States”) name= “United States”
code=USA

{:Country}

{:HasLocation, :HasAddress}

{:HasLocation}

{:
Ha

sA
dd

re
ss
}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 19

DTGraph – Another Example

Example
MATCH (u:User), (a:Address), (w:Location)
WHERE u.address = a.aid AND u.address = w.aid
GENERATE ((u):Person {name = u.name})-[:HasLocation]->

((w.countryName):Country {name=w.countryName , code=w.countryCode}),
((u):Person {name = u.name})-[:HasAddress]->
((a.cityName):City {name=a.cityName , code=a.cityCode})

u1
name= “Jean”
address= addr::a5ef

{:User}

u2
name= “Robert”
address= addr::8bc3

{:User}

a1

aid= addr::a5ef
cityName= “Luxemburg”
cityCode= 1457

{:Address}

a2

aid= addr::8bc3
cityName= “Luxemburg”
cityCode= 1457

{:Address}

`1

aid= addr::a5ef
countryName= “Luxemburg”
countryCode= LUX

{:Location}

`2

aid= addr::8bc3
countryName= “United States”
countryCode=USA

{:Location}

⇒

f (u1) name= “Jean”
{:Person}

f (u2) name= “Robert”
{:Person}

f (“Luxemburg”) name= “Luxemburg”
code= ???

{:City, :Country}

f (“United States”) name= “United States”
code=USA

{:Country}

{:HasLocation, :HasAddress}

{:HasLocation}

{:
Ha

sA
dd

re
ss
}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 19

DTGraph – Another Example

Example
MATCH (u:User), (a:Address), (w:Location)
WHERE u.address = a.aid AND u.address = w.aid
GENERATE ((u):Person {name = u.name})-[:HasLocation]->

((w.countryName):Country {name=w.countryName , code=w.countryCode}),
((u):Person {name = u.name})-[:HasAddress]->
((a.cityName):City {name=a.cityName , code=a.cityCode})

u1
name= “Jean”
address= addr::a5ef

{:User}

u2
name= “Robert”
address= addr::8bc3

{:User}

a1

aid= addr::a5ef
cityName= “Luxemburg”
cityCode= 1457

{:Address}

a2

aid= addr::8bc3
cityName= “Luxemburg”
cityCode= 1457

{:Address}

`1

aid= addr::a5ef
countryName= “Luxemburg”
countryCode= LUX

{:Location}

`2

aid= addr::8bc3
countryName= “United States”
countryCode=USA

{:Location}

⇒

f (u1) name= “Jean”
{:Person}

f (u2) name= “Robert”
{:Person}

f (“Luxemburg”) name= “Luxemburg”
code= ???

{:City, :Country}

f (“United States”) name= “United States”
code=USA

{:Country}

{:HasLocation, :HasAddress}

{:HasLocation}

{:
Ha

sA
dd

re
ss
}

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 19

DTGraph – User Study

User Study

I 12 participants, all already familiar with openCypher

Comparison of the Ability to Understand …

I … manual transformations with handcrafted openCypher scripts, and …
I … transformations with GENERATE clauses
I in clearly defined scenarios

Outcome

I Only 25% of the participants have been able to fully understand the behaviour of the openCypher
scripts, whereas 67% of them succeeded with GENERATE clause transformations

I On average, they scored 50% on openCypher scripts and 90% on GENERATE clause transformations
I Participants have favoured GENERATE clauses by a great margin in terms of understandability,

intuitiveness, and flexibility
Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 20

DTGraph – System Overview

System Overview

Executes
transformations

with conflict detection

Inspects metadata

Inspects the outputWrites declarative specifications
 of transformations

Parses
transformation

rules
Parser Generates

openCypher scripts
Compiler Graph

Database
Back-end

module

I open-source Python3 package; Neo4j Driver
I compatible with Neo4j and Memgraph

I Available at: https://github.com/yannramusat/DTGraph/

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 21

https://github.com/yannramusat/DTGraph/

Conclusion

Graph Queries, Schemas and Transformations

Several Challenges are Still Ahead of Us

I Graph-to-graph transformations (schema correspondences, schema mappings)
I Schema discovery methods leveraging ML
I Entity alignment for property graphs
I Data cleaning for property graphs
I Indexes for dynamic and streaming graphs
I Data quality for streaming graphs

Christopher Spinrath – Big Graph Processing Systems – based on slides by Angela Bonifati 22

	Schema Discovery
	Property Graph Transformations
	Conclusion

