Big Graph Processing Systems

Part Il: Property Graphs
» Chapter 3: Schema Discovery and Property Graph Transformations

Christopher Spinrath
CNRS — LIRIS — Lyon 1 Université

DISS Master 2025

UNIVERSITE

This presentation is an adaption of slides from Angela Bonifati L I R I S LYO N 1

Schema Discovery

From Big Data to the-matrix
Machine Learning

Schema Discovery

address: '2 Main Street,Lyon’
birthday: (day: 1,

— month: January,

year: 1942}

imagefile: 'pg.pog"
creationDate: '29 February"
browserUsed: Firefox

creationDate: '21 July 2009'
browserUsed: Firefox

f Retrgy »
creationdate: "05-12-2020" |/

creationDate: *12 March'

creationDate: "03-14-2020"

t

KNOWS —

browserUsed: Firefox ey
or_
creationDate: ' 14 March 2020"
browserUsed: Safari H4
L J S ey

name: *Eve’
address: ['4 Main Street,'Lyon']
birthday: {day: 11,

month: * June*,

year: 1978}

name: *Alice’
StudentNumber: 42

address: [*Market Street, 'Lyon']

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

e
AN

Output PG Schema

o /mﬂ

g
al £ \ pesent)
8 o -\ Patien ~ suype0t —
‘ RN
»

oo | (comment)

browsarused ST

address [sTanic)
Dithday: (day e,

meta_mandatory:FALSE)

Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic

» no hierarchies

» no complex types

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2

https://gitlab.com/Hgit/pgsinference
https://github.com/PI-Clustering/code

Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic

» no hierarchies

» no complex types
MRSchema: Schema inference using MapReduce on Spark
Code Base: https://gitlab.com/Hgit/pgsinference

» considers either node labels or node properties — trade-off

» property co-occurrence information loss (label-oriented approach) vs. extraneous type inference
(property-oriented approach)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 2

https://gitlab.com/Hgit/pgsinference
https://github.com/PI-Clustering/code

Schema Discovery for Property Graphs

Existing schema discovery/inference mechanisms are basic

» no hierarchies

» no complex types

MRSchema: Schema inference using MapReduce on Spark

Code Base: https://gitlab.com/Hgit/pgsinference
» considers either node labels or node properties — trade-off

» property co-occurrence information loss (label-oriented approach) vs. extraneous type inference
(property-oriented approach)

Schema inference using hierarchical clustering

Code Base: https://github.com/PI-Clustering/code
» Can handle labels and properties at the same time

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

https://gitlab.com/Hgit/pgsinference
https://github.com/PI-Clustering/code

Overview of the MRSchema od

PG Schema Inference Method @ python

P oS Ts s s s s T T EEEEEEETTTT B
Cypher Queries I 1
. 1 aracur
@neoyj | & Python Methods 0 JSON Spark :
1
Neo4j 1 Preprocessing Types and Node : Property
Property | & Data Types Hierarchies I Graph
Graph : Cardinalities Inference Inference 1 Schema
I
|
| MapReduce for JSON [3] : Q °
|
4

Two Variants

» Label-oriented: label sets characterize types

» Property-oriented: labels are properties, property key sets characterize types

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 3

MRSchema — Step 1 and Step 2

{'Patient:Person': {

i
1
1 name: "Alice’ ercn ey
1 rs‘talrjim:ltmber:u namo ;| ALicet, !
|| address: [*Market Street!, 'Lyon'] Person 'birthday': {'day':29, !
|| birthday: (day: 2, Patient 'month': 'May', !
1 o 'year' :2000} !
ear: - B
: ! ‘ 'StudentNumber' : 42, :
. - g 'address': ['Market Street','Lyon'l}}||
Step 1: Preprocessing & Cardinalities ! Person I
! Patient R , 1
1 {'Patient:Person': { .
. | ‘name': Bob,

» Convert input PG to proper format e |
L o o o o o o o o e e e e e e e e e e e e m m m m m m m e m e e mm mm em em o

» Infer edge cardinality constraints l

Step 2: Types & Data Types S === = 1
Inference (MapReduce)

1

! 0 ': STRING

| J|{'Patient:Person': { ynéme \ Do

| e STanG birthday': {'day': NUMBER,

. 1 ‘birthday': {'day': NUMBER, ity BT,

» Label sets characterize types i montnt: STRING year': NUMBER},

1 ’ 'StudentNumber': NUMBER

'year': NUMBER,

: 'meta_mandatory': FALSE},

h ‘address': [NUMBER + STRING],

| 'StudentNumber' : NUMBER ? }}

1

1

'address': [STRING] }}

{'Patient:Person': {
'name': STRING,
'address': [NUMBER] }}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 4

MRSchema — Step 3

Step 3: Node Hierarchies Inference (Label

Intermediate Schema

R e T T T]

name: STRING
name: STRING

address: STRING
I birthday: (day: NowEER,
Imagerile: STRING 7 month: STRING,

Sowservsed: TG —
\ Loy
1 N
| g
& ety _
creationDate: DATE 2 -
| o comttya-a £
T o
| o
g =
creationDate: STRING il
L browserused: sraxia name: sTAIIG
% StudentNumber: NUMEER ?
% address: [STRING + NUMBER]
I v Person Bithay. Gay: wnas,
) Patient o STaING,
1 N/ year: NUMBE:

\

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

e,
meta_mandatory: FALSE)

-oriented variant)

Output PG Schema

\

| Imagefile: sruiv 7
creationDate: STRING

browseruUsed: STRING

lP

g

— 40" A —

gy

o

creationDate: STRING
| browserused: sTRNG
o

_/

%,

name: STRING

address: STRING
birthday: (day: NOWBER,
month: STRING,

year: NUMBER)

Person
Doctor

Subtype0t

%,

2eq,

name: STRING
address: [STRING]
birthday: {day: NUMBER,
month: STRING,

year: NUMBER)

name: STRING
StudentNumber: NUMBER ?
address: [STRING + NMBER]
birthday: (day: NUMBER,
month: STRING,

year: NUMBER,
Meta_mandatory: FALSE)

MRSchema — Step 3

Step 3: Node Hierarchies Inference (Label-oriented variant)

» Supertype inference: Pairwise intersection of label sets

Output PG Schema

Intermediate Schema

R e T T T]

name: STRING
name: STRING

I ity tday ez, birthday: (day: NUMBER,
Imagefile: STRING 7 month: STRING, ImageFile: STRING 7 month: STRING,
Teionoate. SRR Vo wngER) Person | creationbate: STRING year: NOMBER) Dm"m';
| Evterses s — Doctor lowsarUse, TRING e .
4, &
| t TN, e
i 4y B
| 2
1]] U _
creationbate: AT § g
l ‘meta_cardinality: 0.*:1 by <
8 s _+_Patient
7 < Subtype0t

areationdate: sTaNG
L browserused: sraxia name: STaING
Studenthumber: wxeEn 2
| addros: (STRIVG + oWBER
b birthday: (day: NUNBER,
) month: STRIRG
1 _/ yoar: v

\

e,
meta_mandatory: FALSE)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

\

o

o

%

_/

W
creationate: STRING
| browserused: sTRrNG
o 2,

name: STRING
address: STRING

&

%,

name: STRING
address: [STRING]
birthday: {day: NUMBER,
month: STRING,

year: NUMBER)

name: STRING
StudentNumber: NUMBER ?
address: [STRING + NMBER]
birthday: (day: NUMBER,
month: STRING,

year: NUMBER,
Meta_mandatory: FALSE)

MRSchema — Step 3

Step 3: Node Hierarchies Inference (Label-oriented variant)

» Supertype inference: Pairwise intersection of label sets

» Subtype inference: Node type with label set A is a subtype of node type with label set B if B C A

Intermediate Schema Output PG Schema

R e T T T]

2,
e, mandatoy.PALSE

[meta_mandatoryFuisel | year: NUKBER,
meta_mandatory: FALSE)

AY o name: STRING
name: STRING name: STRING address: [STRING]
n;;rm’ s I address: STRING birthday: {day: NUMBER,
frotirsiioned birthday: (day: NUMBER, month: STRING,
I irthday: (day: NUNBER, 1 . /ear: NUMBER)
ImageFile: STRING 7 month: STRINC, ¥
Imagefile: STRING 7 | y Person
Imagefle sTRING Vo wngER) Person creationDate: STRING year: NMBER) bocral
r
e . Doctor | browserused: STRING)
\ Ly, - “‘/A,
1 AN 1 t h
P
g
' \
B ey _ | ‘a
creationbate: DATE g g
l ‘meta_cardinality: 0.*1 o I >4 ¢
8 N 5 Patient -
Lo é ~— Subtype0t
I T I of ;
» /
/ & \
o
1 - 1 o 5, %
creationbate: STRING - \ . %, \
L browserused: staru name: STRING 1 creationDate: STRING 4, \
< Stdertiumber: v ? | browserused: sTenve “ ame: STRING
% address: (STRING + WNBER] % N StudentNumber: NUMBER ?
1 w\ £ Person birthday: (day: woser, | | - %, - address: [STRING + NUMBER]
| "/ Patient mont: STRING ‘o rson birthday: (day: NUMBER,
. year 1 D, Patiel month: STRING,

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 5

MRSchema — Time Performances (per step)

Running Time [s]

100

200 250

150

50

® covid9
fib25
mb6

= Idbc

T T T T T

500000 1000000 1500000 2000000 2500000
PG Size (Number of Nodes + Edges)

Cypher Queries
& Python Methods

Preprocessing

&
Cardinalities

Running Time [s]

_/:

///

® covid19
fib25

* mb6

= ldbe

T
0 500000
PG Size (Number of Nodes + Edges)

Q Json

Types and
Data Types
Inference

Spar

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

T T T T
1000000 1500000 2000000 2500000

Running Time [ms]

o
6
4 /' .
L N G——
L] X . —
M e
.
o

 covidig
fib25

% mb
= Idbe

0 500000 1000000
PG Size (Number of Nodes + Edges)

Python Methods

Node
Hierarchies
Inference

1500000 2000000 2500000

MRSchema — Property-Oriented Variant

Property-Oriented Variant

Labels are properties, property key sets characterize node types
Step 1: Unlabelled nodes are also matched
Step 2: Identification of property co-occurrence information but not optional properties

Step 3: Property key sets are used for subtypes and supertypes inference

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 7

MRSchema — Label-Oriented vs. Property-Oriented Varian

Schema derived with Schema derived with
the label-oriented variant the property-oriented variant

name: STAIRG
address: [sTRING] Fost: ¥OID, Persomt: VOID,
birthday: iday: FMEER, imageFile: STRTVC Person: VOIL, Doctor: VoD,
me. creationDate:sTRtuc | | Patient: WID, name: STRIBG
imagenle: sTRINC 7 T year: MIEER} rowserised: sTae | | Dector: VoIT, address: [sTRINC]
e s Doctor Post VOID, address: STRING bithday: day VMEER,
wserlsed: STRING N crestionpate: STRI¥S birthday:{day: WMBER, year:wrEeR)
4, bromserused: STRING month: STRINC, Persan
e year. wames) Doctor ~
| o
&
g &
FeationDate: DATE 3 % e
meta_cardinality 0.%1 g o, * P
> —
£ e ypace
| & 3
5

o 5 &

&
[T
browserused: STRINC AT A "’?“ name: STRTNC
StudentNumber: NUMBER ?
[STRINC + WMBER]
(day: FUMBER,

Person V0,
Fatient I
name: STRDG
address:[STRIBE]
LY e mf‘f
¢ a, ¢
« & 3 .
¥ Person g
. Fatient | £
%

x
X H i
& StudentNumber: FMEER,
address: [WMEER)
e g e,

address:
birthday:

Porson month: STRING,
Fatient year: 1
meta_mandstory: FALSE)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

A New Clustering-based Method: The DiscoPG System

» Need of combining labels and properties for type inference with improved precision and recall

» Static Case: discover the schema of a static graph dataset G

» GMM-S: novel hierarchical clustering algorithm
» Based on fitting a Gaussian Mixture Model (GMM)
» Accounts for both node label & property information

» Dynamic Case: update the schema of G upon modifications

» |-GMM-D: incremental approach; reuses GMM-S clustering
» GMM-D: recomputation approach; memorization-based

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 9

A GMM Schema Pipeline

A GMM Schema Pipeline

» Gaussian Mixture Model (GMM¥*) to discover hierarchical
node types

» For every node label, run GMM algorithm to fit a mixture of
normal distributions and use the resulting model for clustering

» Re-iterate procedure in each sub-cluster

Step 1: Step 3: :
F’éﬂrge:y Preprocessing Samplin Hierarchical —>
P (Neo4j Queries) ping Clustering !

Property
Graph
Schema

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Inferred LDBC Schema

wame :Sting vama Sting browserUsed:Sting
S otent Tt
- g s LooeDm g reatonDate - DatTme
Tongn 32 5 e
ocsionp - Sing
Py
s Loored iy
Y Locaren w
. REPLY_OF
s crearoR ey b
[E—
'AS_CREATOR creationDate : DateTime
s, Tongin 2.5t neger
Tocation?:Strng
ows conent: Tox
Ianguage St
-HAS_MEMBEF Forum Po U2 o
115 MODERATOR— —comfhenor Not
s o S Suarvee o ote
NTANER OF
14 crenTon sugTrrelor
[restonDat - Dterime ks
oy Date e Siing

Base type Post has two subtypes
o, o0, oeues o Post1l and Post2

length : 32-bit Integer
locationlP : String

HAS'INTEREST
locationlP : String

browserUsed : String
creationDate : DateTime

‘name : String
url: String

imageFile : String

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

11

LDBC Schema

0.

likes {creationDate, deletionDate} ————————————————»|

0.
Message ——isLocatedin—

0.% 1y

Person

0.* | creationDate: DateTime [1.-*
deletionDate: DateTime

firstName: String

hasMember g

[« {creationDate,

deletionDate}

creationDate: DateTime [————hasTag
deletionDate: DateTime

o

browserUsed: String
locationiP: String
centent: Text[0..1]
length: 32-bit Integer replyof

_ j1astName: String N o Forum L containeror—ay
0.% J gender: String [€—hasModerator —— . Post ‘ Comment ‘

birthday: Date creationDate: DateTime | 0. Tag—
email: Long String[1..*] deletionDate: DateTime g language: String[0..1]

HonDate, | Speaks: String[1..%] imageFile: String[0..1]

(;sr;u‘,"""m‘i:) browserUsed: String title: Long String
locationlP: String 0.*
0.* 0.x 0.%
‘ Static
isLocatedin
0.+ Jor o
TagClass P Tag Place
1 0

studyAt |
classYear: 32-bit Integer

name: Long String
0.14 url: Long String

name: Long String
url: Long String

isSubclassOf

name: Long String
url: Long String

Organisation

islocatedin | name: Long String
url: Long String

isLocatedin

e]|

5.

" workFrom: 32-bit Integer

. 1

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

https://github.com/ldbc/ldbc_snb_docs

Schema Quality wrt. Baseline (MRSchema)

MRSchema
property-oriented variant

MRSchema
label-oriented variant

GMMSchema

Dataset | Node Types | Edge Types | Subtype Edges | Hierarchy Depth
LDBC 17 72 51 5
Mbé6 68 795 786 9
Fib25 47 427 418 8

Dataset | Node Types | Edge Types | Subtype Edges | Hierarchy Depth
LDBC 7 21 0 0
Mbé 5 10 1 1
Fib25 5 10 1 1

Dataset | Node Types | Edge Types | Subtype Edges | Hierarchy Depth
LDBC 17 36 9 2
Mbé6 19 27 14 4
Fib25 26 106 21 6

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

GMM Schema Discovery Runtimes wrt. Baseline

80
160 —e— LDBC Baseline —¥— covidl9
LDBC GMMSchema 704
1401 —a— Fib25 Baseline
Fib25 GMMSchema 60
1201 Mb6 Baseline
_ —+— Mb6 GMMSchema _
) 501
o 100 o
E £
F F 40
£ 0 £
c =
£ £ 301
Z 60 2
20
40 A
20 4 101
— 4
0 0
T T T T T T T T T T T T T T T T T T
0.00 025 050 0.75 1.00 1.25 1.50 1.75 2.00 0.00 025 0.50 0.75 1.00 1.25 1.50 1.75 2.00
PG Size (Number of nodes + Edges) le6 PG Size (Number of nodes + Edges) le6

(a) LDBC, Fib25, Mb6 (b) Covid19

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 14

Property Graph Transformations

A Declarative
Transformation
Framework

source-code

(DBLP:journals/pvldb/BonifatiMR24)

Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

» Schema-last approach; as opposed to the schema-first approach in SQL

» The representation of the data depends on the evolving use-cases

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 15

Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile

» Schema-last approach; as opposed to the schema-first approach in SQL

» The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 15

Declarative Property Graph Transformations Are Essential

The property graph data model is flexible and agile
» Schema-last approach; as opposed to the schema-first approach in SQL
» The representation of the data depends on the evolving use-cases
Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)
2. A new piece of data may represent a complex pattern over the source data
» Defining an appropriate notion of identity is crucial

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 15

Declarative Property Graph nsformations Are Essential

The property graph data model is flexible and agile

» Schema-last approach; as opposed to the schema-first approach in SQL

» The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)

2. A new piece of data may represent a complex pattern over the source data
» Defining an appropriate notion of identity is crucial

3. Primitives for handling data contents

» Data values may contribute to the identity of new elements
» Similarly, labels may contribute to the identity of new elements

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 15

Declarative Property Graph nsformations Are Essential

The property graph data model is flexible and agile

» Schema-last approach; as opposed to the schema-first approach in SQL

» The representation of the data depends on the evolving use-cases

Requirements for Property Graph Transformations

1. Nodes may be transformed into edges (and vice-versa)

2. A new piece of data may represent a complex pattern over the source data
» Defining an appropriate notion of identity is crucial

3. Primitives for handling data contents

» Data values may contribute to the identity of new elements
» Similarly, labels may contribute to the identity of new elements

4. New elements may aggregate the content of past ones

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 15

Current State

» Typical graph query languages return tuples (rows of a table)
» Hence, they cannot be composed/chained together

» A transformation should rather return a (sub)graph structure

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 16

Current State

» Typical graph query languages return tuples (rows of a table)
» Hence, they cannot be composed/chained together

» A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

» In practical graph database systems such as Neo4;j

» Handcrafted openCypher scripts
» APOC (Awesome Procedures on Cypher)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 16

Current State

» Typical graph query languages return tuples (rows of a table)
» Hence, they cannot be composed/chained together
» A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

» In practical graph database systems such as Neo4;j
» Handcrafted openCypher scripts
» APOC (Awesome Procedures on Cypher)
» In the research literature
» Data exchange for graph databases
10.1145/2448496.2448520
10.1145/3034786.3056113
» Graph databases transformations
10.1145/3584372.3588654

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Current State

» Typical graph query languages return tuples (rows of a table)
» Hence, they cannot be composed/chained together
» A transformation should rather return a (sub)graph structure

Existing Solutions and Approaches

» In practical graph database systems such as Neo4;j

» Handcrafted openCypher scripts
» APOC (Awesome Procedures on Cypher)

» In the research literature
» Data exchange for graph databases
10.1145/2448496.2448520
10.1145/3034786.3056113
» Graph databases transformations
10.1145/3584372.3588654

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

Property Graph sformations

Declarative Specifications

.. have been recognized as pivotal for solving data programmability problems

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 17

https://github.com/yannramusat/DTGraph/

Property Graph sformations

Declarative Specifications

.. have been recognized as pivotal for solving data programmability problems

New Framework for Property Graph Transformations

Code Base: https://github.com/yannramusat/DTGraph/
» Declarative; rule-based
» Intuitive and expressive
» Efficiently implementable in practical graph database systems

» openCypher extension and theoretical foundations (GPC)

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 17

https://github.com/yannramusat/DTGraph/

raph — An Example of the GENERATE clause

{:PRODUCED}

Input Schema

{:DIRECTED}

name: STRING
born: DATE

{:Person} »(title: STRING) {:Movie}

{:ACTED_IN}

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 18

raph — An Example of the GENERATE clause

{:PRODUCED}

Input Schema

{:DIRECTED}

name: STRING
born: DATE

{:Person} »(title: STRING) {:Movie}

{:ACTED_IN}
Transformation rules are openCypher scripts extended by the GENERATE clause
MATCH (n:Person)-[:ACTED_IN]->(:Movie)

GENERATE (x = (n):Actor { x.name = n.name, x.born = n.born })

» (n) is the identifier of the (potentially!) new node x

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 18

raph — An Example of the GENERATE clause

{:PRODUCED}

Input Schema

{:DIRECTED}

name: STRING
born: DATE

{:Person} »(title: STRING) {:Movie}

{:ACTED_IN}

Transformation rules are openCypher scripts extended by the GENERATE clause
MATCH (n:Person)-[:ACTED_IN]->(:Movie)
GENERATE (x = (n):Actor { x.name = n.name, x.born = n.born })
» (n) is the identifier of the (potentially!) new node x
MATCH (n:Person)-[:DIRECTED]->(:Movie)

GENERATE (x = (n):Director { x.name = n.name, x.born = n.born })

» Together these rules can generate nodes which have two labels: Actor and Director

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 18

DTGraph — Another Ex

Example

MATCH (u:User), (a:Address), (w:Location)

WHERE u.address = a.aid AND u.address = w.aid

GENERATE ((u) :Person {name = u.name})-[:HasLocation]->
((w.countryName) : Country {name=w.countryName, code=w.countryCodel})

{:User} {:User}
ean” Pl name = “Robert”
Bl 2ddress = addr::8bc3

{:Address}
aid=addr:8bc3

aid =addr::abef
cityName = "Luxemburg”
cityCode = 1457

cityName = “Luxemburg”
cityCode = 1457

{:Location} {:Location}
aid = addr::abef aid =addr::8bc3
V29l countryName = "Luxemburg” VY29 countryName = “United States”
countryCode = LUX countryCode = USA

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 19

DTGraph — Another Example

Example

MATCH (u:User),
WHERE u.address

{:User}
name Jean”
address = addr::abef

{:Address}

aid =addr::abef

cityName = "Luxemburg”
cityCode = 1457

{:Location}

(a:Address),
a.aid AND u.address
GENERATE ((u) :Person {name = u.name})-[:HasLocation]->
((w.countryName) : Country {name=w.countryName,
((u) :Person {name = u.namel})-[:HasAddress]->
((a.cityName) :City {name=a.cityName, code=a.cityCodel)

{:User}

name = "Robert”
Bl 2ddress = addr::8bc3

{:Address}
aid=addr:8bc3

cityName = “Luxemburg”
cityCode = 1457

{:Location}

(w:Location)

code=w.countryCode}),

aid = addr::abef

V29l countryName = "L uxemburg

countryCode = LUX

aid =addr::8bc3
countryName = “United States”
countryCode = USA

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

DTGraph — Another Example

Example

MATCH (u:User), (a:Address), (w:Location)

WHERE u.address = a.aid AND u.address = w.aid

GENERATE ((u) :Person {name = u.name})-[:HasLocation]->
((w.countryName) : Country {name=w.countryName, code=w.countryCode}),
((u) :Person {name = u.namel})-[:HasAddress]->
((a.cityName) :City {name=a.cityName, code=a.cityCodel)

{:Person}

{:User} {:User}

. prS— {:HasLocation, :HasAddress}
ean U name — ober

address = addr::abef Bl 2ddress = addr::8bc3 { :City, : Country}
{:Address} {:Address} ~ name = "“Luxemburg”
aid = addr::abef aid=addr:8bc3 éaz code =777
cityName = "Luxemburg” cityName = “Luxemburg” i .é/
i = i =145 (] ="“Uni "
cityCode = 1457 cityCode 57 (}. ed States?) name United States
v code = USA
{:Location} {:Location} b

aid = addr::8bc3 {:Country}

VY29 countryName = “United States”
countryCode = USA

aid = addr::abef
V29l countryName = "Luxemburg”

countryCode = LUX { :HaSLocatlon}

name = “Robert”

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati

DTGraph — User Study

User Study

» 12 participants, all already familiar with openCypher

Comparison of the Ability to Understand ...

» .. manual transformations with handcrafted openCypher scripts, and ..
» .. transformations with GENERATE clauses

» in clearly defined scenarios

Outcome
» Only 25% of the participants have been able to fully understand the behaviour of the openCypher
scripts, whereas 67% of them succeeded with GENERATE clause transformations
» On average, they scored 50% on openCypher scripts and 90% on GENERATE clause transformations

» Participants have favoured GENERATE clauses by a great margin in terms of understandability,
intuitiveness, and flexibility

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 20

DTGraph — System Overview

System Overview

Parses E It
transformation Gg nehrates ot Backc;elnd transxf?)‘r:rk':lztsions gr?p:
rules opentypher scripts LS with conflict detection atabase

Inspects metadata

Writes declarative specifications Inspects the output
of transformations

» open-source Python3 package; Neo4j Driver
» compatible with Neo4j and Memgraph

» Available at: https://github.com/yannramusat/DTGraph/

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 21

https://github.com/yannramusat/DTGraph/

Conclusion

Graph Queries, Schemas and Transformations

Several Challenges are Still Ahead of Us

v

Graph-to-graph transformations (schema correspondences, schema mappings)
» Schema discovery methods leveraging ML
Entity alignment for property graphs

v

» Data cleaning for property graphs
» Indexes for dynamic and streaming graphs
» Data quality for streaming graphs

Christopher Spinrath — Big Graph Processing Systems — based on slides by Angela Bonifati 22

	Schema Discovery
	Property Graph Transformations
	Conclusion

