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QIDs and The Repair Problem



Motivation

Previously

I Data quality is an important problem in data management
I Dirty data is everywhere and costly
I A principled approach to detect inconsistencies and similar objects based on quality dependencies

I Conditional FDs, Matching Dependencies, etc.

In this Episode

Can these dependencies also be used to repair data?
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Ingredients: Dependencies and Repair Models

Ingredients for the Repair Problem

1. Quality dependencies
I For instance, (conditional) FDs, Matching dependencies, etc.

2. A dirty database
3. A repair model

I What kind of operations are allowed to modify the database?
I Examples: tuple deletions, tuple insertions, value modifications

4. A cost model
I the repair should differ minimally
I Examples: number of deletions, edit distance

Goal
A clean database that satisfies all the dependencies

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 3



Ingredients – Example

Example (Ingredients for the Repair Problem)

1. Key FD: Student[Id → Name]
2. The dirty database with

Relation Student
Id Name

123 Volta
123 Marconi
456 Avogadro
789 Fermi

3. Repair model: only tuple deletions
4. Cost model: number of deletions

Two Possible Repairs
Relation Student

Id Name
123 Marconi
456 Avogadro
789 Fermi

or

Relation Student
Id Name

123 Volta
456 Avogadro
789 Fermi
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Repairs

Definition (Repair)

A repair D ′ of database D with respect to
I a set Σ of data quality dependencies and
I a quality metric qty governed by underlying

repair and cost models
is a database such that

1. D ′ |= Σ, and
2. qty(D,D ′) is maximal

Example
In the previous example

I Σ consisted of a key FD
I the repair model/metric was the so-called

subset repair, i.e., the maximal repair
included in the original database which only
allows for deletions

We will shortly make more precise
I what Σ is, i.e., which data quality dependencies we consider; and
I what repair models and quality metrics are used

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 5
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Different Approaches to Data Repairing

Observation
We have seen that a repair is not unique

I The research community has studied two different ways of dealing with (multiple) repairs and
queries over them

Consistent Query Answering

I Avoid selecting a repair; and
I at query time only return query answers that are common to all repairs
I Has been studied for quite some time now

Data Repairing

I Select the best possible repair
I which is subsequently queried. Has only recently received attention in the database community

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 6
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Consistent Query Answering

Idea of Consistent Query Answering

Consider all repairs but only retrieve common answers

Challenge

How to compute certain answers without computing all repairs?
I This is an independent subject on its own

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 7



Data Repairing and Querying

Idea of Data Repairing

Select a best repair and query it

Challenge

How to compute a best repair?
I We will focus on this

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 8



Data Quality Dependencies

Specification of Data Quality Rules

I The formalism should be expressive enough to specify data quality rules; and
I simple enough such that reasoning over them is (rather) efficient

How are Data Qualities Specified?
Using a logical formalism

I Note that unrestricted use of logic leads to undecidable problems
I For example, it is well-known that the satisfiability problem of first-order logic is undecidable
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Data Quality Dependencies

Recall: Conditional Function Dependencies (CFDs)

Extension of FDs with constants on both premise and consequence

Example (Conditional Functional Dependency (CFD))

“In the UK, the zip code uniquely determines the street”

∀t1∀t2
((

Address(t1) ∧ Address(t2)∧

t1[zip] = t2[zip] ∧ t1[CC] = t2[CC] ∧ t1[CC] = 44
)
→ t1[street] = t2[street]

)

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 10



Data Quality Dependencies

Recall: Matching Dependencies

Extension of FDs with similarity relations in the premise

Example (Matching Dependencies (MDs))
“If two entities (tuples) agree on their last name and address and if their first names are
similar, then the two tuples should be identified on related attributes”

∀t1∀t2
((

CardHolder(t1) ∧ Transaction(t2)

∧ t1[LN] = t2[LN] ∧ t1[address] = t2[post] ∧ t1[FN] � t2[FN]
)
→ t1[X ] = t2[Y ]

)
I � is a similarity operator
I X and Y are compatible attributes of CardHolder and Transaction, respectively.
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A Language for Data Quality Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

∀t1∀t2
((

R(t1) ∧ S(t2) ∧
∧

i∈[1,n]

t1[Ai ] opi t2[Bi ]
)
→

∧
j∈[1,m]

t1[Cj ] op′
j t2[Dj ]

)
where the operators opi and op′

j form the signature of the dependency

Operators

I Equality: t1[A] = t2[B] iff attribute A of t1 and B of t2 have the same value
I Equality with constant: t1[A] =c t2[B] iff attribute A of t1 and B of t2 have value c
I Similarity: t1[A] ∼ t2[B] iff the values of attribute A of t1 and B of t2 are similar relative to some

similarity relation ∼

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 12
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Quality Improving Dependencies

Subclasses of QIDs

FDs Signatures consist of equality only
CFDs Signatures consist of equalities and equalities with constants
MDs Signatures consist of equality and similarity relations

Note
We will not consider inclusion dependencies (INDs) or
conditional INDs in the remainder of this lecture
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Repair Models

Repair Models

I determine which modifications are allowed to repair a database; and
I which cost function (if any) is optimized

Subset Repair (S-Repair)

A S-repair D ′ of a database D w.r.t. a set Σ of
QIDs is a database D ′ such that

I D ′ |= Σ and D ′ ⊆ D; and
I there is no database D ′′ such that D ′′ |= Σ

and D ′ ( D ′′ ⊆ D.

Observation

I S-repairs are obtained by tuple deletions

Symmetric-Difference Repair (∆-Repair)

A ∆-repair D ′ of a database D w.r.t. a set Σ of
QIDs is a database D ′ such that

I D ′ |= Σ; and
I there is no database D ′′ such that D ′′ |= Σ

and D∆D ′′ ⊆ D∆D ′.

Observations

I Recall: the symmetric difference X∆Y of
two sets X ,Y is X∆Y = (X \Y )∪ (Y \X)

I ∆-repairs are obtained by tuple deletions
and insertions

Observation
The quality dependencies considered here can never be resolved by inserting tuples

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 14
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Repair models

Value-Modification Repair (V-Repair)1

A V-Repair D ′ of a database D w.r.t. a set Σ of QIDs is a database D ′ such that
I D ′ |= Σ; and
I the cost

cost(D ′,D) =
∑

t′∈D′,t∈D
t→t′

∑
Attribute A

w(t,A) · dist(t[A], t′[A])

is minimized, where
I t → t′ means that t′ is a tuple in D ′ derived from t in D;
I w(t,A) denotes the accuracy of attribute A;
I dist is a distance measure.

Observation
V-repairs can be obtained by tuple deletions, insertions and attribute-value modifications
1Hao et al., “A Novel Cost-Based Model for Data Repairing”, IEEE Trans. Knowl. Data Eng., 2017
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Example: V-Repair

Example (V-Repair)

Key constraint: Student[Id → Name]

Dirty Database

Relation Student
Id Name

123 Volta
123 Marconi
456 Avogadro
789 Fermi

Repaired, Clean Database
Relation Student

Id Name
123 Volta
345 Marconi
456 Avogadro
789 Fermi

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 16
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Repairing by Chasing



Finding Repairs

Idea

I To find repairs we take some inspiration from the classic chase procedure

Why the Chase?

The chase takes as input
I a set Σ of (equality and tuple generating) dependencies; and
I an input database D, possibly containing null (i.e. unknown) values,

and, if the chase terminates successfully, then it outputs a database D ′ such that D ′ |= Σ

Notes

I It seems that the chase solves the problem of data repairing
I at least for equality and tuple generating dependencies, and
I without taking any cost function into account

I However, we will see that we have to extend the standard chase

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 17
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The Standard Chase for QIDs

Let

ϕ = ∀t1∀t2
((

R(t1) ∧ S(t2) ∧
∧

i∈[1,n]

t1[Ai ] opi t2[Bi ]︸ ︷︷ ︸
ψ

)
→ t1[C ] = t2[D]

)

be a non-constant QID.
I here non-constant means that the operator in the consequence is equality

Firing of a QID

The QID ϕ can be fired on a database D if there are two tuples t1, t2 ∈ D such that
I (D, t1, t2) |= ψ holds
I but (D, t1, t2) |= t1[C ] = t2[D] does not hold

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 18
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The Standard Chase for QIDs

The Chase Procedure
Input: a database D, possibly with labelled nulls representing missing values

1. Initialize D ′ = D
2. As long as there is a QID ϕ and tuples t1, t2 ∈ D ′ for which ϕ can be fired do

2.1 If t1[C ] = nulli and t2[D] = c is a constant, replace nulli in every tuple in D ′ with c
2.2 If t1[C ] = nulli and t2[D] = nullj , replace nullj in every tuple in D ′ with nulli
2.3 If t1[C ] = c and t2[D] = d are both constants, then report failure

Preferences
Intuitively, constants overwrite labelled nulls as these are less informative

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 19



The Standard Chase for QIDs – Example

Example (Case 2.1: Null vs. Constant)

Key constraint: ϕ = Student[Id → Name]

Dirty Database
Relation Student

Id Name
123 null1

123 Marconi
456 Avogadro
444 null1

789 Fermi
888 null2

After Firing ϕ
Relation Student

Id Name
123 Marconi
456 Avogadro
444 Marconi
789 Fermi
888 null2

Firing ϕ

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 20



The Standard Chase for QIDs – Example

Example (Case 2.2: Null vs. Null)

Key constraint: ϕ = Student[Id → Name]

Dirty Database
Relation Student

Id Name
123 null1

123 null2

456 Avogadro
789 Fermi
888 null1

After Firing ϕ
Relation Student

Id Name
123 null2

456 Avogadro
789 Fermi
888 null2

Firing ϕ
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The Standard Chase for QIDs – Example

Example (Case 2.3: Constant vs. Constant)

Key constraint: ϕ = Student[Id → Name]

Dirty Database
Relation Student

Id Name
123 Volta
123 Marconi
456 Avogadro
789 Fermi
888 null2

Failure!
because Volta 6= Marconi

Firing ϕ

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 22



The Standard Chase for QIDs – Example

Example (Conditional Dependencies)

CFD: ϕ = Student[Id = 123 → Name = Marconi ]

Dirty Database
Relation Student

Id Name
123 null1

123 Marconi
456 Avogadro
444 null1

789 Fermi
888 null2

The chase is not defined!

Extending the Chase

To find a repair, we have to extend the chase procedure
This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 23



Extending the Chase

Problem
The chase fails when meeting two different constants or constants in the consequence of QIDs

Ideas
Modify the chase procedure to

1. choose between different constants when QIDs are fired
I based on some additional information

2. overwrite values based on constants in the consequence of QIDs
3. replace different constants with a special value, if no additional information is available

Note
This modifications should happen locally and not over the entire table

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 24
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The Extended Chase

The Chase Procedure
Input: a database D, possibly with labelled nulls representing missing values

1. Initialize D ′ = D
2. As long as there is a QID ϕ and tuples t1, t2 ∈ D ′ for which ϕ can be fired do

2.1 If t1[C ] = nulli and t2[D] = c is a constant, replace nulli in every tuple in D ′ with c
2.2 If t1[C ] = nulli and t2[D] = nullj , replace nullj in every tuple in D ′ with nulli
2.3 If t1[C ] = c and t2[D] = d are both constants, then report failure

I If the consequence of ϕ is an equality with a constant e, i.e. t1[C ] =e t2[D],
then assign t1[C ] and t2[D] value e

I If additional information indicates a value for c and d,
then assign this value to t1[C ] and t2[D]

I If no information is available,
then symbolically unify t1[C ] and t2[D] by means of a special symbol
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Chasing with the Extended Chase

Example (Extended Chase)

Key constraint: ϕ = Student[Id → Name]

Challenge

How do we obtain additional information to
resolve conflicts between different constants?

Dirty Database
Relation Student
Id Name

123 Volta
123 Marconi
456 Avogadro
789 Fermi

Vorta is preferred
Relation Student
Id Name

123 Volta
456 Avogadro
789 Fermi

Marconi is preferred
Relation Student
Id Name

123 Marconi
456 Avogadro
789 Fermi

None is preferred
Relation Student

Id Name
123 special symbol ⊥1

456 Avogadro
789 Fermi

Firing ϕ

Firing ϕ

Firing ϕ
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Repairing with QIDs



Chasing with Functional Dependencies

Key Ideas

I Use a V-repair cost function to choose between values when chasing

cost(D ′,D) =
∑

t′∈D′,t∈D
t→t′

∑
Attribute A

w(t,A) · dist(t[A], t′[A])

I As before, only local changes are done
I The result may contain special symbols in case no clear choice can be made

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 27



Chasing with Functional Dependencies

Example

fd1 : Address[zip → city] fd2 : Address[name, street, city → phn]

CC AC phn name street city zip

t1 : 44 131 1234567 Mike Mayfield EDI EH4 8LE

t2 : 44 131 3456789 Alex Crichton NYC EH4 8LE

t3 : 44 131 5678910 Alex Crichton EDI EH4 8LE

t4 : 01 908 3456789 Jane Mth Ave NYC 07974

I The extended chase chooses between EDI and NYC based on the minimal number of incurred
changes (V-repair cost function): In this case EDI

I If the extended chase has no real information to choose between the two phone numbers, then a
special symbol is written

I If the extended chase has information to choose between the two phone numbers, then that phone
number is selected

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 28
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Chasing with Conditional Functional Dependencies

The Extended Chase and CFDs
Can the same approach still be applied for CFDs?

Example
cfd1 : R [C = c1 → B = b1] cfd2 : R [C = c2 → B = b2] cfd3 : R [A → B]

A B C

t1 : a b1 c1

t2 : a b2 c2

I cfd1 and cfd2 are satisfied

I cfd3 can be fired, suppose that b1 is preferred over b2

I But now cfd2 is no longer satisfied

Conclusion
The extended chase can be used with CFDs but does not always lead to a repair
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Chasing with Matching Dependencies

The Extended Chase and MDs
Can the same approach be applied for MDs?

Yes!

I The chase proceeds as for functional dependencies
I except that it takes into account the similarity relations when firing a QID
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Master Data and Certified Attributes

Problem

I We have seen that the extended chase does not always know how to resolve errors
I And sometimes multiple choices may be available

More Information is Required
The user needs to provide more information to the chase:

I Master Data: reference data that is trusted and clean
I Certified Attributes: attributes whose values are assured to be correct

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 31



Chasing with Master Data and Certified Attributes

Quality Improving Dependency with Master Data

∀t∀tm

((
R(t) ∧ Rm(tm) ∧

∧
i∈[1,n]

t[Ai ] opi tm[Bi ]
)
→

∧
j∈[1,`]

t[Cj ] op′
j tm[Dj ]

)
where Rm is the master data (for relation R)

Adapting the Chase

I The values of the master data are always preferred; and
I QIDs are fired only when attributes in the premise are certified
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Chasing with Master Data and Certified Attributes – Example

Examples

∀t∀tm

((
Address(t) ∧ Addressm(tm) ∧ t[zip] = tm[zip]

)
→

(
t[AC] = tm[AC] ∧ t[street] = tm[street] ∧ t[city] = tm[city]

))

∀t∀tm

((
Address(t) ∧ Addressm(tm) ∧ t[phn] = tm[phn] ∧ t[type] = 2

)
→

(
t[FN] = tm[FN] ∧ t[LN] = tm[LN]

))
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Chasing with Master Data and Certified Attributes

Chasing with Master Data and Certified Attributes

I Provides a uniform way of repairing data for QIDs
I By selecting certified attributes carefully, one can impose that only a unique repair is obtained

I this is called a certain fix

Challenges

I Finding a “good” set of certified attributes (certain regions)
I How to repair incrementally

I for instance, when data or QIDs are updated

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 34



Confidence-Based Repairing

Key Idea of Confidence-Based Repairing

I Annotate attribute/values with confidence values (how sure one is that a value is correct)
I During the chase, these confidence values get propagated
I A QID is fired only if the confidence of the involved values does not decrease
I In this way, each chase step improves the quality of the data

I as measured by the confidence values

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 35



Summary

Repairing

I The extended chase alone is a first step towards a clean and elegant repair algorithm
I In the presence of master data, one often finds better quality repairs
I Although this approach shows promise in practice, the properties of the extended chase are not

fully understood yet and further investigation is necessary

Take away message

Data repairing: a rich source of problems and challenges

This presentation is based on slides by Angela Bonifati, adapted by Christopher Spinrath 36
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