

Data Processing and Analytics (DISS-DPA)

Principles of Data Quality – Repairing with Quality Improving Constraints

Christopher Spinrath

Database Group (BD) – CNRS – LIRIS – Université Lyon 1

Fall 2025

This presentation is based on slides by Angela Bonifati

Outline

1. QIDs and The Repair Problem
2. Repairing by Chasing
3. Repairing with QIDs
4. Repairing in the Presence of Master Data

QIDs and The Repair Problem

Previously

- ▶ Data quality is an **important problem** in data management
- ▶ Dirty data is **everywhere** and **costly**
- ▶ A principled approach to **detect inconsistencies** and **similar objects** based on quality dependencies
 - ▶ Conditional FDs, Matching Dependencies, etc.

Previously

- ▶ Data quality is an **important problem** in data management
- ▶ Dirty data is **everywhere** and **costly**
- ▶ A principled approach to **detect inconsistencies** and **similar objects** based on quality dependencies
 - ▶ Conditional FDs, Matching Dependencies, etc.

In this Episode

Can these dependencies also be used to **repair** data?

Ingredients: Dependencies and Repair Models

Ingredients for the Repair Problem

1. Quality dependencies
 - ▶ For instance, (conditional) FDs, Matching dependencies, etc.
2. A dirty database
3. A repair model
 - ▶ What kind of operations are allowed to modify the database?
 - ▶ Examples: tuple deletions, tuple insertions, value modifications
4. A cost model
 - ▶ the repair should differ minimally
 - ▶ Examples: number of deletions, edit distance

Goal

A clean database that satisfies all the dependencies

Ingredients – Example

Example (Ingredients for the Repair Problem)

1. Key FD: $\text{Student}[\text{Id} \rightarrow \text{Name}]$
2. The dirty database with

Relation Student	
Id	Name
123	Volta
123	Marconi
456	Avogadro
789	Fermi

3. Repair model: only tuple deletions
4. Cost model: number of deletions

Ingredients – Example

Example (Ingredients for the Repair Problem)

1. Key FD: $\text{Student}[\text{Id} \rightarrow \text{Name}]$
2. The dirty database with

Relation Student	
Id	Name
123	Volta
123	Marconi
456	Avogadro
789	Fermi

3. Repair model: only tuple deletions
4. Cost model: number of deletions

Two Possible Repairs

Relation Student	
Id	Name
123	Marconi
456	Avogadro
789	Fermi

or

Relation Student	
Id	Name
123	Volta
456	Avogadro
789	Fermi

Definition (Repair)

A **repair** D' of database D with respect to

- ▶ a set Σ of data quality dependencies and
- ▶ a quality metric qty governed by underlying repair and cost models

is a database such that

1. $D' \models \Sigma$, and
2. $\text{qty}(D, D')$ is **maximal**

We will shortly make more precise

- ▶ what Σ is, i.e., which data quality dependencies we consider; and
- ▶ what repair models and quality metrics are used

Definition (Repair)

A **repair** D' of database D with respect to

- ▶ a set Σ of data quality dependencies and
- ▶ a quality metric qty governed by underlying repair and cost models

is a database such that

1. $D' \models \Sigma$, and
2. $\text{qty}(D, D')$ is **maximal**

We will shortly make more precise

- ▶ what Σ is, i.e., which data quality dependencies we consider; and
- ▶ what repair models and quality metrics are used

Example

In the previous example

- ▶ Σ consisted of a key FD
- ▶ the repair model/metric was the so-called subset repair, i.e., the maximal repair included in the original database which only allows for deletions

Different Approaches to Data Repairing

Observation

We have seen that a repair is not unique

Different Approaches to Data Repairing

Observation

We have seen that a repair is not unique

- ▶ The research community has studied **two different ways** of dealing with (multiple) repairs and queries over them

Different Approaches to Data Repairing

Observation

We have seen that a repair is not unique

- ▶ The research community has studied **two different ways** of dealing with (multiple) repairs and queries over them

Consistent Query Answering

- ▶ **Avoid selecting** a repair; and
- ▶ at query time only return query answers that are common to **all repairs**
- ▶ Has been studied for quite some time now

Different Approaches to Data Repairing

Observation

We have seen that a repair is not unique

- ▶ The research community has studied **two different ways** of dealing with (multiple) repairs and queries over them

Consistent Query Answering

- ▶ **Avoid selecting** a repair; and
- ▶ at query time only return query answers that are common to **all repairs**
- ▶ Has been studied for quite some time now

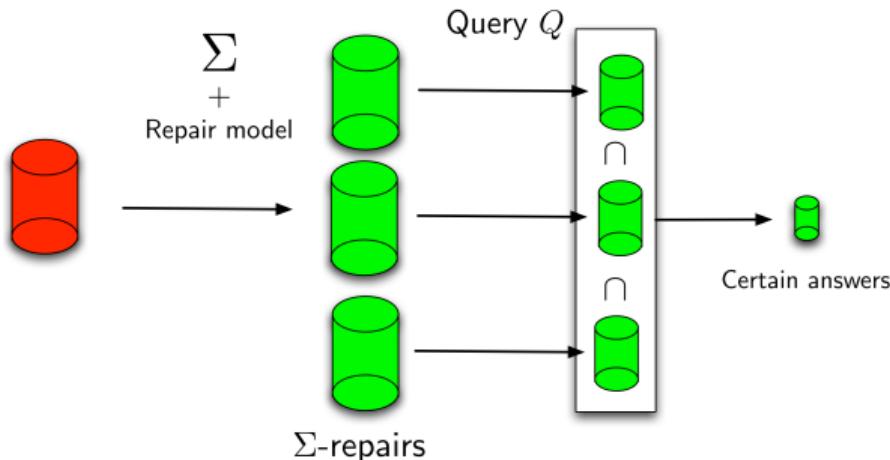
Data Repairing

- ▶ Select the **best possible repair**
- ▶ which is subsequently queried. Has only recently received attention in the database community

Consistent Query Answering

Idea of Consistent Query Answering

Consider all repairs but only retrieve common answers



Challenge

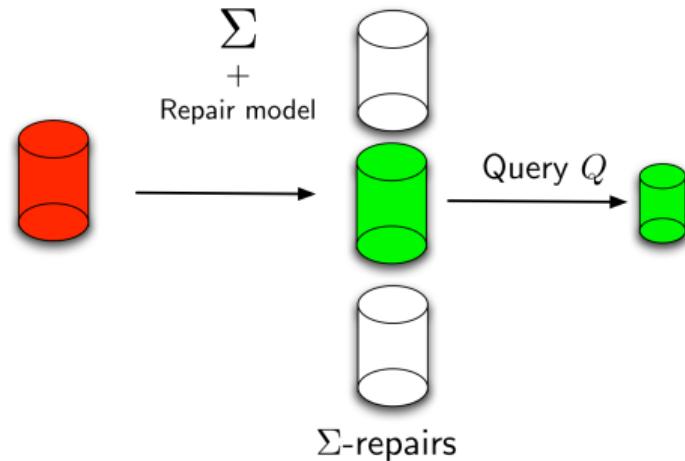
How to compute certain answers [without](#) computing all repairs?

- ▶ This is an independent subject on its own

Data Repairing and Querying

Idea of Data Repairing

Select a best repair and query it



Challenge

How to compute a best repair?

- We will focus on this

Specification of Data Quality Rules

- ▶ The formalism should be expressive enough to specify data quality rules; and
- ▶ simple enough such that reasoning over them is (rather) efficient

Specification of Data Quality Rules

- ▶ The formalism should be expressive enough to specify data quality rules; and
- ▶ simple enough such that reasoning over them is (rather) efficient

How are Data Qualities Specified?

Using a [logical formalism](#)

- ▶ Note that unrestricted use of logic leads to undecidable problems
 - ▶ For example, it is well-known that the satisfiability problem of first-order logic is undecidable

Data Quality Dependencies

Recall: Conditional Function Dependencies (CFDs)

Extension of FDs with constants on both premise and consequence

Example (Conditional Functional Dependency (CFD))

“In the UK, the zip code uniquely determines the street”

$$\forall t_1 \forall t_2 \left((\text{Address}(t_1) \wedge \text{Address}(t_2) \wedge t_1[\text{zip}] = t_2[\text{zip}] \wedge t_1[\text{CC}] = t_2[\text{CC}] \wedge t_1[\text{CC}] = 44) \rightarrow t_1[\text{street}] = t_2[\text{street}] \right)$$

Recall: Matching Dependencies

Extension of FDs with similarity relations in the premise

Example (Matching Dependencies (MDs))

“If two entities (tuples) agree on their last name and address and if their first names are similar, then the two tuples should be identified on related attributes”

Recall: Matching Dependencies

Extension of FDs with similarity relations in the premise

Example (Matching Dependencies (MDs))

“If two entities (tuples) agree on their last name and address and if their first names are similar, then the two tuples should be identified on related attributes”

$$\begin{aligned} \forall t_1 \forall t_2 \Big(& (\text{CardHolder}(t_1) \wedge \text{Transaction}(t_2) \\ & \wedge t_1[\text{LN}] = t_2[\text{LN}] \wedge t_1[\text{address}] = t_2[\text{post}] \wedge t_1[\text{FN}] \asymp t_2[\text{FN}]) \rightarrow t_1[X] = t_2[Y] \Big) \end{aligned}$$

- ▶ \asymp is a **similarity operator**
- ▶ X and Y are compatible attributes of **CardHolder** and **Transaction**, respectively.

A Language for Data Quality Dependencies

Quality Improving Dependency (QID)

A **quality improving dependency (QID)** is a first-order sentence of the following form

$$\forall t_1 \forall t_2 \left((R(t_1) \wedge S(t_2) \wedge \bigwedge_{i \in [1, n]} t_1[A_i] \text{ op}_i t_2[B_i]) \rightarrow \bigwedge_{j \in [1, m]} t_1[C_j] \text{ op}'_j t_2[D_j] \right)$$

where the **operators** op_i and op'_j form the **signature** of the dependency

A Language for Data Quality Dependencies

Quality Improving Dependency (QID)

A **quality improving dependency (QID)** is a first-order sentence of the following form

$$\forall t_1 \forall t_2 \left((R(t_1) \wedge S(t_2) \wedge \bigwedge_{i \in [1, n]} t_1[A_i] \text{ op}_i t_2[B_i]) \rightarrow \bigwedge_{j \in [1, m]} t_1[C_j] \text{ op}'_j t_2[D_j] \right)$$

where the **operators** op_i and op'_j form the **signature** of the dependency

Operators

- ▶ **Equality:** $t_1[A] = t_2[B]$ iff attribute A of t_1 and B of t_2 have the same value
- ▶ **Equality with constant:** $t_1[A] =_c t_2[B]$ iff attribute A of t_1 and B of t_2 have value c
- ▶ **Similarity:** $t_1[A] \sim t_2[B]$ iff the values of attribute A of t_1 and B of t_2 are similar relative to some similarity relation \sim

Subclasses of QIDs

FDs Signatures consist of equality only

CFDs Signatures consist of equalities and equalities with constants

MDs Signatures consist of equality and similarity relations

Note

We will not consider inclusion dependencies (INDs) or conditional INDs in the remainder of this lecture

Repair Models

- ▶ determine which modifications are allowed to repair a database; and
- ▶ which cost function (if any) is optimized

Repair Models

Repair Models

- ▶ determine which modifications are allowed to repair a database; and
- ▶ which cost function (if any) is optimized

Subset Repair (S-Repair)

A **S-repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$ and $D' \subseteq D$; and
- ▶ there is **no** database D'' such that $D'' \models \Sigma$ and $D' \subsetneq D'' \subseteq D$.

Observation

- ▶ S-repairs are obtained by tuple deletions

Subset Repair (S-Repair)

A **S-repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$ and $D' \subseteq D$; and
- ▶ there is **no** database D'' such that $D'' \models \Sigma$ and $D' \subsetneq D'' \subseteq D$.

Observation

- ▶ S-repairs are obtained by tuple deletions

Subset Repair (S-Repair)

A **S-repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$ and $D' \subseteq D$; and
- ▶ there is **no** database D'' such that $D'' \models \Sigma$ and $D' \subsetneq D'' \subseteq D$.

Symmetric-Difference Repair (Δ -Repair)

A **Δ -repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$; and
- ▶ there is **no** database D'' such that $D'' \models \Sigma$ and $D \Delta D'' \subseteq D \Delta D'$.

Observation

- ▶ S-repairs are obtained by tuple deletions

Subset Repair (S-Repair)

A **S-repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$ and $D' \subseteq D$; and
- ▶ there is **no** database D'' such that $D'' \models \Sigma$ and $D' \subsetneq D'' \subseteq D$.

Observation

- ▶ S-repairs are obtained by tuple deletions

Symmetric-Difference Repair (Δ -Repair)

A **Δ -repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$; and
- ▶ there is **no** database D'' such that $D'' \models \Sigma$ and $D \Delta D'' \subseteq D \Delta D'$.

Observations

- ▶ Recall: the symmetric difference $X \Delta Y$ of two sets X, Y is $X \Delta Y = (X \setminus Y) \cup (Y \setminus X)$
- ▶ Δ -repairs are obtained by tuple deletions and insertions

Subset Repair (S-Repair)

A **S-repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$ and $D' \subseteq D$; and
- ▶ there is **no** database D'' such that $D'' \models \Sigma$ and $D' \subsetneq D'' \subseteq D$.

Observation

- ▶ S-repairs are obtained by tuple deletions

Observation

The quality dependencies considered here can never be resolved by inserting tuples

Symmetric-Difference Repair (Δ -Repair)

A **Δ -repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$; and
- ▶ there is **no** database D'' such that $D'' \models \Sigma$ and $D \Delta D'' \subseteq D \Delta D'$.

Observations

- ▶ Recall: the symmetric difference $X \Delta Y$ of two sets X, Y is $X \Delta Y = (X \setminus Y) \cup (Y \setminus X)$
- ▶ Δ -repairs are obtained by tuple deletions and insertions

Value-Modification Repair (V-Repair)¹

A **V-Repair** D' of a database D w.r.t. a set Σ of QIDs is a database D' such that

- ▶ $D' \models \Sigma$; and
- ▶ the cost

$$\text{cost}(D', D) = \sum_{\substack{t' \in D', t \in D \\ t \rightarrow t'}} \sum_{\text{Attribute } A} w(t, A) \cdot \text{dist}(t[A], t'[A])$$

is minimized, where

- ▶ $t \rightarrow t'$ means that t' is a tuple in D' derived from t in D ;
- ▶ $w(t, A)$ denotes the **accuracy** of attribute A ;
- ▶ dist is a **distance measure**.

Observation

V-repairs can be obtained by tuple deletions, insertions and attribute-value modifications

¹Hao et al., "A Novel Cost-Based Model for Data Repairing", *IEEE Trans. Knowl. Data Eng.*, 2017

Example: V-Repair

Example (V-Repair)

Key constraint: Student[Id → Name]

Dirty Database

Relation Student	
Id	Name
123	Volta
123	Marconi
456	Avogadro
789	Fermi

Example: V-Repair

Example (V-Repair)

Key constraint: Student[Id → Name]

Dirty Database

Relation Student	
Id	Name
123	Volta
123	Marconi
456	Avogadro
789	Fermi

Example: V-Repair

Example (V-Repair)

Key constraint: Student[Id → Name]

Dirty Database

Relation Student	
Id	Name
123	Volta
123	Marconi
456	Avogadro
789	Fermi

Repaired, Clean Database

Relation Student	
Id	Name
123	Volta
345	Marconi
456	Avogadro
789	Fermi

Repairing by Chasing

Idea

- ▶ To find repairs we take some inspiration from the classic [chase procedure](#)

Finding Repairs

Idea

- ▶ To find repairs we take some inspiration from the classic **chase procedure**

Why the Chase?

The chase takes as input

- ▶ a set Σ of (equality and tuple generating) dependencies; and
- ▶ an input database D , possibly containing null (i.e. unknown) values,

and, **if the chase terminates successfully**, then it outputs a database D' such that $D' \models \Sigma$

Finding Repairs

Idea

- ▶ To find repairs we take some inspiration from the classic **chase** procedure

Why the Chase?

The chase takes as input

- ▶ a set Σ of (equality and tuple generating) dependencies; and
- ▶ an input database D , possibly containing null (i.e. unknown) values,

and, if the chase terminates successfully, then it outputs a database D' such that $D' \models \Sigma$

Notes

- ▶ It seems that the chase solves the problem of data repairing
 - ▶ at least for equality and tuple generating dependencies, and
 - ▶ without taking any cost function into account
- ▶ However, we will see that we have to extend the standard chase

The Standard Chase for QIDs

Let

$$\varphi = \forall t_1 \forall t_2 \left(\underbrace{\left(R(t_1) \wedge S(t_2) \wedge \bigwedge_{i \in [1, n]} t_1[A_i] \text{ op}_i t_2[B_i] \right)}_{\psi} \rightarrow t_1[C] = t_2[D] \right)$$

be a **non-constant QID**.

- ▶ here non-constant means that the operator in the consequence is equality

The Standard Chase for QIDs

Let

$$\varphi = \forall t_1 \forall t_2 \left(\left(R(t_1) \wedge S(t_2) \wedge \underbrace{\bigwedge_{i \in [1, n]} t_1[A_i] \text{ op}_i t_2[B_i]}_{\psi} \right) \rightarrow t_1[C] = t_2[D] \right)$$

be a **non-constant QID**.

- ▶ here non-constant means that the operator in the consequence is equality

Firing of a QID

The QID φ can be **fired** on a database D if there are two tuples $t_1, t_2 \in D$ such that

- ▶ $(D, t_1, t_2) \models \psi$ holds
- ▶ but $(D, t_1, t_2) \models t_1[C] = t_2[D]$ **does not hold**

The Standard Chase for QIDs

The Chase Procedure

Input: a database D , possibly with **labelled nulls** representing missing values

1. Initialize $D' = D$
2. As long as there is a QID φ and tuples $t_1, t_2 \in D'$ for which φ can be fired do
 - 2.1 If $t_1[C] = \text{null}_i$ and $t_2[D] = c$ is a constant, replace null_i in every tuple in D' with c
 - 2.2 If $t_1[C] = \text{null}_i$ and $t_2[D] = \text{null}_j$, replace null_j in every tuple in D' with null_i
 - 2.3 If $t_1[C] = c$ and $t_2[D] = d$ are both constants, then **report failure**

Preferences

Intuitively, constants overwrite labelled nulls as these are less informative

The Standard Chase for QIDs – Example

Example (Case 2.1: Null vs. Constant)

Key constraint: $\varphi = \text{Student}[\text{Id} \rightarrow \text{Name}]$

Dirty Database

Relation Student	
Id	Name
123	null ₁
123	Marconi
456	Avogadro
444	null ₁
789	Fermi
888	null ₂

After Firing φ

Relation Student	
Id	Name
123	Marconi
456	Avogadro
444	Marconi
789	Fermi
888	null ₂

Firing φ

The Standard Chase for QIDs – Example

Example (Case 2.2: Null vs. Null)

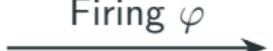
Key constraint: $\varphi = \text{Student}[\text{Id} \rightarrow \text{Name}]$

Dirty Database

Relation Student

Id	Name
123	null ₁
123	null ₂
456	Avogadro
789	Fermi
888	null ₁

Firing φ



After Firing φ

Relation Student

Id	Name
123	null ₂
456	Avogadro
789	Fermi
888	null ₂

The Standard Chase for QIDs – Example

Example (Case 2.3: Constant vs. Constant)

Key constraint: $\varphi = \text{Student}[\text{Id} \rightarrow \text{Name}]$

Dirty Database

Relation Student

Id	Name
123	Volta
123	Marconi
456	Avogadro
789	Fermi
888	null ₂

$\xrightarrow{\text{Firing } \varphi}$

Failure!
because Volta \neq Marconi

The Standard Chase for QIDs – Example

Example (Conditional Dependencies)

CFD: $\varphi = \text{Student}[\text{Id} = 123 \rightarrow \text{Name} = \text{Marconi}]$

Dirty Database

Relation Student

Id	Name
123	null ₁
123	Marconi
456	Avogadro
444	null ₁
789	Fermi
888	null ₂

~~~~~ The chase is not defined! ~~~~~

## Extending the Chase

To find a repair, we have to extend the chase procedure

# Extending the Chase

## Problem

The chase fails when meeting two different constants or constants in the consequence of QIDs

# Extending the Chase

## Problem

The chase fails when meeting two different constants or constants in the consequence of QIDs

## Ideas

Modify the chase procedure to

1. choose between different constants when QIDs are fired
  - ▶ based on some additional information
2. overwrite values based on constants in the consequence of QIDs
3. replace different constants with a special value, if no additional information is available

# Extending the Chase

## Problem

The chase fails when meeting two different constants or constants in the consequence of QIDs

## Ideas

Modify the chase procedure to

1. choose between different constants when QIDs are fired
  - ▶ based on some additional information
2. overwrite values based on constants in the consequence of QIDs
3. replace different constants with a special value, if no additional information is available

## Note

This modifications should happen locally and not over the entire table

# The Extended Chase

## The Chase Procedure

**Input:** a database  $D$ , possibly with **labelled nulls** representing missing values

1. Initialize  $D' = D$
2. As long as there is a QID  $\varphi$  and tuples  $t_1, t_2 \in D'$  for which  $\varphi$  can be fired do
  - 2.1 If  $t_1[C] = \text{null}_i$  and  $t_2[D] = c$  is a constant, replace  $\text{null}_i$  in every tuple in  $D'$  with  $c$
  - 2.2 If  $t_1[C] = \text{null}_i$  and  $t_2[D] = \text{null}_j$ , replace  $\text{null}_j$  in every tuple in  $D'$  with  $\text{null}_i$ ;
  - 2.3 If  $t_1[C] = c$  and  $t_2[D] = d$  are both constants, then **report failure**

# The Extended Chase

## The Extended Chase Procedure

**Input:** a database  $D$ , possibly with **labelled nulls** representing missing values

1. Initialize  $D' = D$
2. As long as there is a QID  $\varphi$  and tuples  $t_1, t_2 \in D'$  for which  $\varphi$  can be fired do
  - 2.1 If  $t_1[C] = \text{null}_i$  and  $t_2[D] = c$  is a constant, replace  $\text{null}_i$  in every tuple in  $D'$  with  $c$
  - 2.2 If  $t_1[C] = \text{null}_i$  and  $t_2[D] = \text{null}_j$ , replace  $\text{null}_j$  in every tuple in  $D'$  with  $\text{null}_i$ ;
  - 2.3 If  $t_1[C] = c$  and  $t_2[D] = d$  are both constants, then ~~report failure~~

# The Extended Chase

## The Extended Chase Procedure

**Input:** a database  $D$ , possibly with **labelled nulls** representing missing values

1. Initialize  $D' = D$
2. As long as there is a QID  $\varphi$  and tuples  $t_1, t_2 \in D'$  for which  $\varphi$  can be fired do
  - 2.1 If  $t_1[C] = \text{null}_i$  and  $t_2[D] = c$  is a constant, replace  $\text{null}_i$  in every tuple in  $D'$  with  $c$
  - 2.2 If  $t_1[C] = \text{null}_i$  and  $t_2[D] = \text{null}_j$ , replace  $\text{null}_j$  in every tuple in  $D'$  with  $\text{null}_i$ ;
  - 2.3 If  $t_1[C] = c$  and  $t_2[D] = d$  are both constants, then
    - ▶ If the consequence of  $\varphi$  is an equality with a constant  $e$ , i.e.  $t_1[C] =_e t_2[D]$ , then assign  $t_1[C]$  and  $t_2[D]$  value  $e$
    - ▶ If additional information indicates a value for  $c$  and  $d$ , then assign this value to  $t_1[C]$  and  $t_2[D]$
    - ▶ If no information is available, then symbolically unify  $t_1[C]$  and  $t_2[D]$  by means of a special symbol

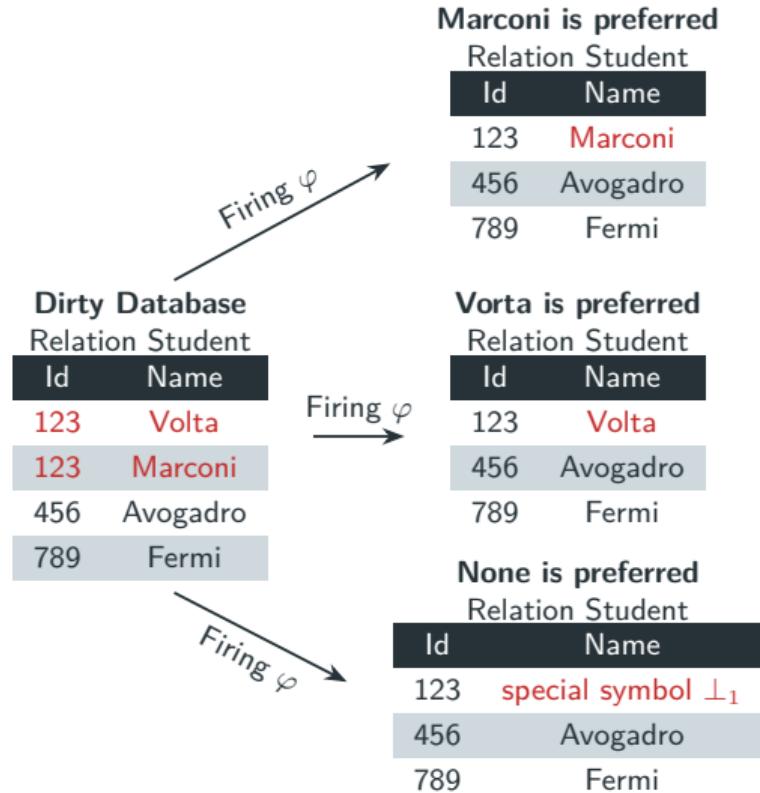
## Example (Extended Chase)

Key constraint:  $\varphi = \text{Student}[\text{Id} \rightarrow \text{Name}]$

# Chasing with the Extended Chase

## Example (Extended Chase)

Key constraint:  $\varphi = \text{Student}[\text{Id} \rightarrow \text{Name}]$



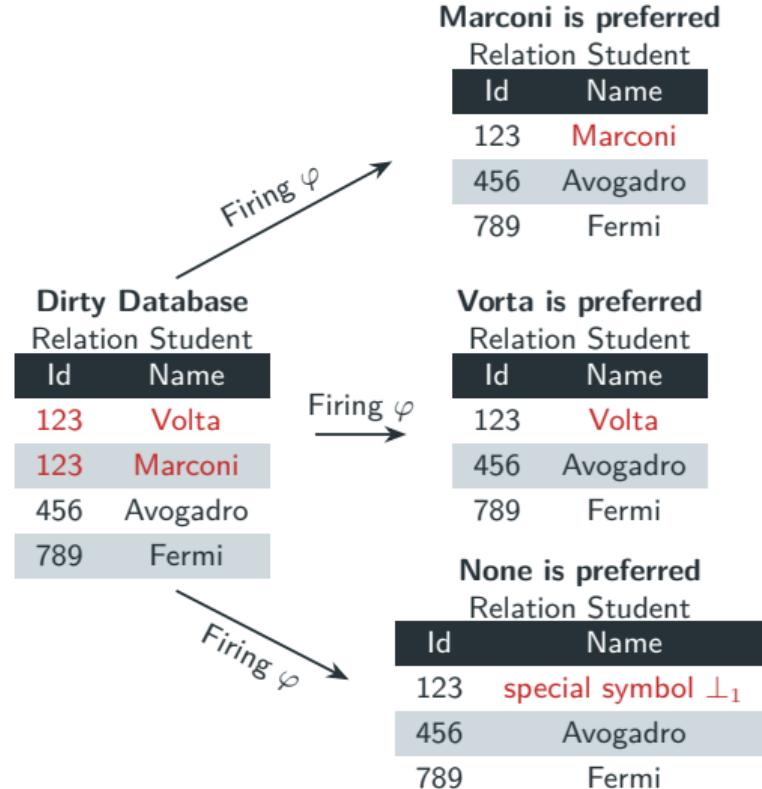
# Chasing with the Extended Chase

## Example (Extended Chase)

Key constraint:  $\varphi = \text{Student}[\text{Id} \rightarrow \text{Name}]$

## Challenge

How do we obtain additional information to resolve conflicts between different constants?



## Repairing with QIDs

---

## Key Ideas

- ▶ Use a **V-repair cost function** to choose between values when chasing

$$\text{cost}(D', D) = \sum_{\substack{t' \in D', t \in D \\ t \rightarrow t'}} \sum_{\text{Attribute } A} w(t, A) \cdot \text{dist}(t[A], t'[A])$$

- ▶ As before, only **local changes** are done
- ▶ The result may contain special symbols in case no clear choice can be made

# Chasing with Functional Dependencies

## Example

$fd_1: Address[zip \rightarrow city]$        $fd_2: Address[name, street, city \rightarrow phn]$

|        | CC | AC  | phn     | name | street   | city | zip     |
|--------|----|-----|---------|------|----------|------|---------|
| $t_1:$ | 44 | 131 | 1234567 | Mike | Mayfield | EDI  | EH4 8LE |
| $t_2:$ | 44 | 131 | 3456789 | Alex | Crichton | NYC  | EH4 8LE |
| $t_3:$ | 44 | 131 | 5678910 | Alex | Crichton | EDI  | EH4 8LE |
| $t_4:$ | 01 | 908 | 3456789 | Jane | Mth Ave  | NYC  | 07974   |

# Chasing with Functional Dependencies

## Example

$fd_1: Address[zip \rightarrow city]$        $fd_2: Address[name, street, city \rightarrow phn]$

|        | CC | AC  | phn     | name | street   | city | zip     |
|--------|----|-----|---------|------|----------|------|---------|
| $t_1:$ | 44 | 131 | 1234567 | Mike | Mayfield | EDI  | EH4 8LE |
| $t_2:$ | 44 | 131 | 3456789 | Alex | Crichton | NYC  | EH4 8LE |
| $t_3:$ | 44 | 131 | 5678910 | Alex | Crichton | EDI  | EH4 8LE |
| $t_4:$ | 01 | 908 | 3456789 | Jane | Mth Ave  | NYC  | 07974   |

# Chasing with Functional Dependencies

## Example

$fd_1: Address[zip \rightarrow city]$

$fd_2: Address[name, street, city \rightarrow phn]$

|        | CC | AC  | phn     | name | street   | city | zip     |
|--------|----|-----|---------|------|----------|------|---------|
| $t_1:$ | 44 | 131 | 1234567 | Mike | Mayfield | EDI  | EH4 8LE |
| $t_2:$ | 44 | 131 | 3456789 | Alex | Crichton | NYC  | EH4 8LE |
| $t_3:$ | 44 | 131 | 5678910 | Alex | Crichton | EDI  | EH4 8LE |
| $t_4:$ | 01 | 908 | 3456789 | Jane | Mth Ave  | NYC  | 07974   |

- The extended chase chooses between EDI and NYC based on the minimal number of incurred changes (V-repair cost function): In this case EDI

# Chasing with Functional Dependencies

## Example

$fd_1: Address[zip \rightarrow city]$        $fd_2: Address[name, street, city \rightarrow phn]$

|        | CC | AC  | phn     | name | street   | city | zip     |
|--------|----|-----|---------|------|----------|------|---------|
| $t_1:$ | 44 | 131 | 1234567 | Mike | Mayfield | EDI  | EH4 8LE |
| $t_2:$ | 44 | 131 | 3456789 | Alex | Crichton | EDI  | EH4 8LE |
| $t_3:$ | 44 | 131 | 5678910 | Alex | Crichton | EDI  | EH4 8LE |
| $t_4:$ | 01 | 908 | 3456789 | Jane | Mth Ave  | NYC  | 07974   |

- The extended chase chooses between EDI and NYC based on the minimal number of incurred changes (V-repair cost function): In this case EDI

# Chasing with Functional Dependencies

## Example

$fd_1: Address[zip \rightarrow city]$

$fd_2: Address[name, street, city \rightarrow phn]$

|        | CC | AC  | phn     | name | street   | city | zip     |
|--------|----|-----|---------|------|----------|------|---------|
| $t_1:$ | 44 | 131 | 1234567 | Mike | Mayfield | EDI  | EH4 8LE |
| $t_2:$ | 44 | 131 | 3456789 | Alex | Crichton | EDI  | EH4 8LE |
| $t_3:$ | 44 | 131 | 5678910 | Alex | Crichton | EDI  | EH4 8LE |
| $t_4:$ | 01 | 908 | 3456789 | Jane | Mth Ave  | NYC  | 07974   |

- ▶ The extended chase chooses between EDI and NYC based on the minimal number of incurred changes (V-repair cost function): In this case EDI
- ▶ If the extended chase has no real information to choose between the two phone numbers, then a special symbol is written

# Chasing with Functional Dependencies

## Example

$fd_1: Address[zip \rightarrow city]$

$fd_2: Address[name, street, city \rightarrow phn]$

|        | CC | AC  | phn            | name | street   | city | zip     |
|--------|----|-----|----------------|------|----------|------|---------|
| $t_1:$ | 44 | 131 | 1234567        | Mike | Mayfield | EDI  | EH4 8LE |
| $t_2:$ | 44 | 131 | special symbol | Alex | Crichton | EDI  | EH4 8LE |
| $t_3:$ | 44 | 131 | special symbol | Alex | Crichton | EDI  | EH4 8LE |
| $t_4:$ | 01 | 908 | 3456789        | Jane | Mth Ave  | NYC  | 07974   |

- ▶ The extended chase chooses between EDI and NYC based on the minimal number of incurred changes (V-repair cost function): In this case EDI
- ▶ If the extended chase has no real information to choose between the two phone numbers, then a special symbol is written

# Chasing with Functional Dependencies

## Example

$fd_1: Address[zip \rightarrow city]$

$fd_2: Address[name, street, city \rightarrow phn]$

|        | CC | AC  | phn     | name | street   | city | zip     |
|--------|----|-----|---------|------|----------|------|---------|
| $t_1:$ | 44 | 131 | 1234567 | Mike | Mayfield | EDI  | EH4 8LE |
| $t_2:$ | 44 | 131 | 3456789 | Alex | Crichton | EDI  | EH4 8LE |
| $t_3:$ | 44 | 131 | 3456789 | Alex | Crichton | EDI  | EH4 8LE |
| $t_4:$ | 01 | 908 | 3456789 | Jane | Mth Ave  | NYC  | 07974   |

- ▶ The extended chase chooses between EDI and NYC based on the minimal number of incurred changes (V-repair cost function): In this case EDI
- ▶ If the extended chase has no real information to choose between the two phone numbers, then a special symbol is written
- ▶ If the extended chase has information to choose between the two phone numbers, then that phone number is selected

# Chasing with Conditional Functional Dependencies

## The Extended Chase and CFDs

Can the same approach still be applied for CFDs?

# Chasing with Conditional Functional Dependencies

## The Extended Chase and CFDs

Can the same approach still be applied for CFDs?

### Example

$\text{cf}_1: R[C = c_1 \rightarrow B = b_1]$      $\text{cf}_2: R[C = c_2 \rightarrow B = b_2]$      $\text{cf}_3: R[A \rightarrow B]$

|        | A | B     | C     |
|--------|---|-------|-------|
| $t_1:$ | a | $b_1$ | $c_1$ |
| $t_2:$ | a | $b_2$ | $c_2$ |

►  $\text{cf}_1$  and  $\text{cf}_2$  are satisfied

# Chasing with Conditional Functional Dependencies

## The Extended Chase and CFDs

Can the same approach still be applied for CFDs?

### Example

$\text{cf}_1: R[C = c_1 \rightarrow B = b_1]$      $\text{cf}_2: R[C = c_2 \rightarrow B = b_2]$      $\text{cf}_3: R[A \rightarrow B]$

|        | A | B     | C     |
|--------|---|-------|-------|
| $t_1:$ | a | $b_1$ | $c_1$ |
| $t_2:$ | a | $b_2$ | $c_2$ |

- ▶  $\text{cf}_1$  and  $\text{cf}_2$  are satisfied
- ▶  $\text{cf}_3$  can be fired, suppose that  $b_1$  is preferred over  $b_2$

# Chasing with Conditional Functional Dependencies

## The Extended Chase and CFDs

Can the same approach still be applied for CFDs?

### Example

$\text{cf}_1: R[C = c_1 \rightarrow B = b_1]$      $\text{cf}_2: R[C = c_2 \rightarrow B = b_2]$      $\text{cf}_3: R[A \rightarrow B]$

|        | A | B     | C     |
|--------|---|-------|-------|
| $t_1:$ | a | $b_1$ | $c_1$ |
| $t_2:$ | a | $b_1$ | $c_2$ |

- ▶  $\text{cf}_1$  and  $\text{cf}_2$  are satisfied
- ▶  $\text{cf}_3$  can be fired, suppose that  $b_1$  is preferred over  $b_2$
- ▶ But now  $\text{cf}_2$  is no longer satisfied

# Chasing with Conditional Functional Dependencies

## The Extended Chase and CFDs

Can the same approach still be applied for CFDs?

### Example

$\text{cf}_1: R[C = c_1 \rightarrow B = b_1]$      $\text{cf}_2: R[C = c_2 \rightarrow B = b_2]$      $\text{cf}_3: R[A \rightarrow B]$

|        | A | B     | C     |
|--------|---|-------|-------|
| $t_1:$ | a | $b_1$ | $c_1$ |
| $t_2:$ | a | $b_1$ | $c_2$ |

- ▶  $\text{cf}_1$  and  $\text{cf}_2$  are satisfied
- ▶  $\text{cf}_3$  can be fired, suppose that  $b_1$  is preferred over  $b_2$
- ▶ But now  $\text{cf}_2$  is no longer satisfied

### Conclusion

The extended chase can be used with CFDs but [does not always lead to a repair](#)

## The Extended Chase and MDs

Can the same approach be applied for MDs?

## The Extended Chase and MDs

Can the same approach be applied for MDs?

**Yes!**

- ▶ The chase proceeds as for functional dependencies
- ▶ except that it takes into account the similarity relations when firing a QID

## Repairing in the Presence of Master Data

---

## Problem

- ▶ We have seen that the extended chase does not always know how to resolve errors
- ▶ And sometimes multiple choices may be available

## More Information is Required

The user needs to provide more information to the chase:

- ▶ **Master Data:** reference data that is trusted and clean
- ▶ **Certified Attributes:** attributes whose values are assured to be correct

## Quality Improving Dependency with Master Data

$$\forall t \forall t_m \left( (R(t) \wedge R_m(t_m) \wedge \bigwedge_{i \in [1, n]} t[A_i] \text{ op}_i t_m[B_i]) \rightarrow \bigwedge_{j \in [1, \ell]} t[C_j] \text{ op}'_j t_m[D_j] \right)$$

where  $R_m$  is the master data (for relation  $R$ )

## Adapting the Chase

- ▶ The values of the master data are always preferred; and
- ▶ QIDs are fired only when attributes in the premise are certified

# Chasing with Master Data and Certified Attributes – Example

## Examples

$$\begin{aligned} \forall t \forall t_m \left( (\text{Address}(t) \wedge \text{Address}_m(t_m) \wedge t[\text{zip}] = t_m[\text{zip}]) \right. \\ \left. \rightarrow (t[\text{AC}] = t_m[\text{AC}] \wedge t[\text{street}] = t_m[\text{street}] \wedge t[\text{city}] = t_m[\text{city}]) \right) \end{aligned}$$

$$\begin{aligned} \forall t \forall t_m \left( (\text{Address}(t) \wedge \text{Address}_m(t_m) \wedge t[\text{phn}] = t_m[\text{phn}] \wedge t[\text{type}] = 2) \right. \\ \left. \rightarrow (t[\text{FN}] = t_m[\text{FN}] \wedge t[\text{LN}] = t_m[\text{LN}]) \right) \end{aligned}$$

## Chasing with Master Data and Certified Attributes

- ▶ Provides a uniform way of repairing data for QIDs
- ▶ By selecting certified attributes carefully, one can impose that only a unique repair is obtained
  - ▶ this is called a **certain fix**

## Challenges

- ▶ Finding a “good” set of certified attributes (certain regions)
- ▶ How to repair incrementally
  - ▶ for instance, when data or QIDs are updated

## Key Idea of Confidence-Based Repairing

- ▶ Annotate attribute/values with confidence values (how sure one is that a value is correct)
- ▶ During the chase, these confidence values get propagated
- ▶ A QID is fired **only if** the confidence of the involved values does not decrease
- ▶ In this way, each chase step improves the quality of the data
  - ▶ as measured by the confidence values

## Repairing

- ▶ The extended chase alone is a first step towards a clean and elegant repair algorithm
- ▶ In the presence of master data, one often finds better quality repairs
- ▶ Although this approach shows promise in practice, the properties of the extended chase are not fully understood yet and further investigation is necessary

## Repairing

- ▶ The extended chase alone is a first step towards a clean and elegant repair algorithm
- ▶ In the presence of master data, one often finds better quality repairs
- ▶ Although this approach shows promise in practice, the properties of the extended chase are not fully understood yet and further investigation is necessary

### Take away message

Data repairing: a rich source of problems and challenges