
Data Processing and Analytics (DISS-DPA)
Principles of Data Quality – Data Quality Rules for Graphs

Christopher Spinrath
Database Group (BD) – CNRS – LIRIS – Université Lyon 1

Fall 2025

This presentation is licensed under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International license
Copyright © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Motivation

Previously

I Data quality is an important problem in data management
I Dirty data is everywhere and costly
I A principled approach to detect and repair errors

I Using quality improving dependencies (QIDs)
I Capturing conditional functional dependencies (CFDs), matching dependencies (MDs), etc.

In this Episode
Can we transfer these techniques from the relational setting to graphs?

I Instead of a relational database consisting of tables, a database is represented by a graph

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 1

Motivation

Previously

I Data quality is an important problem in data management
I Dirty data is everywhere and costly
I A principled approach to detect and repair errors

I Using quality improving dependencies (QIDs)
I Capturing conditional functional dependencies (CFDs), matching dependencies (MDs), etc.

In this Episode
Can we transfer these techniques from the relational setting to graphs?

I Instead of a relational database consisting of tables, a database is represented by a graph

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 1

Data Model: Graphs with Labels and Properties

Data Model
In this chapter, we represent a database by
directed graphs G = (V ,E , L,P) where

I V is a set of nodes
I E is a set of edges

I L is a function that assigns
I a label L(v) to every node v ∈ V
I a label L(e) to every edge e ∈ E

I P is a function that assigns
I a set of key-value pairs, called

properties, to every node v ∈ V

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 2

Data Model: Graphs with Labels and Properties

Data Model
In this chapter, we represent a database by
directed graphs G = (V ,E , L,P) where

I V is a set of nodes
I E is a set of edges
I L is a function that assigns

I a label L(v) to every node v ∈ V
I a label L(e) to every edge e ∈ E

I P is a function that assigns
I a set of key-value pairs, called

properties, to every node v ∈ V

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 2

Data Model: Graphs with Labels and Properties

Data Model
In this chapter, we represent a database by
directed graphs G = (V ,E , L,P) where

I V is a set of nodes
I E is a set of edges
I L is a function that assigns

I a label L(v) to every node v ∈ V
I a label L(e) to every edge e ∈ E

I P is a function that assigns
I a set of key-value pairs, called

properties, to every node v ∈ V

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 2

Recall: Ingredients for the Repair Problem

Recall: Ingredients for the Repair Problem

1. Quality dependencies
I We considered quality improving dependencies

I Are they applicable to graphs?

2. A dirty relational database
3. A repair model

I What kind of operations are allowed to modify the database?
I Examples: tuple deletions, tuple insertions, value modifications

4. A cost model
I the repair should differ minimally
I Examples: number of deletions, edit distance

Goal
A clean database that satisfies all the dependencies

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 3

Recall: Ingredients for the Repair Problem

Recall: Ingredients for the Repair Problem

1. Quality dependencies
I We considered quality improving dependencies
I Are they applicable to graphs?

2. A dirty graph database
3. A repair model

I What kind of operations are allowed to modify the database?
I Examples: tuple deletions, tuple insertions, value modifications

4. A cost model
I the repair should differ minimally
I Examples: number of deletions, edit distance

Goal
A clean graph that satisfies all the dependencies

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 3

Recall: Data Improving Dependencies

Recall: Data Improving Dependencies (QIDs)

Formalism for data quality rules that covers
I Functional Dependencies (FDs)
I Conditional Functional Dependencies (CFDs)
I Matching Dependencies (MDs)

Example (A CFD written as a QID)

“In the UK, the zip code uniquely determines the street”

∀t1∀t2
((

Address(t1) ∧ Address(t2)∧

t1[zip] = t2[zip] ∧ t1[CC] = t2[CC] ∧ t1[CC] = 44
)
→ t1[street] = t2[street]

)

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 4

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

∀t1∀t2
((

R(t1) ∧ S(t2) ∧
∧

i∈[1,n]

t1[Ai] opi t2[Bi]
)
→

∧
j∈[1,m]

t1[Cj] op′
j t2[Dj]

)
where the operators opi and op′

j form the signature of the dependency

Operators

I Equality: t1[A] = t2[B] iff attribute A of t1 and B of t2 have the same value
I Equality with constant: t1[A] =c t2[B] iff attribute A of t1 and B of t2 have value c
I Similarity: t1[A] ∼ t2[B] iff the values of attribute A of t1 and B of t2 are similar relative to some

similarity relation ∼

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 5

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

∀t1∀t2
((

R(t1) ∧ S(t2) ∧
∧

i∈[1,n]

t1[Ai] opi t2[Bi]
)
→

∧
j∈[1,m]

t1[Cj] op′
j t2[Dj]

)
where the operators opi and op′

j form the signature of the dependency

Operators

I Equality: t1[A] = t2[B] iff attribute A of t1 and B of t2 have the same value
I Equality with constant: t1[A] =c t2[B] iff attribute A of t1 and B of t2 have value c
I Similarity: t1[A] ∼ t2[B] iff the values of attribute A of t1 and B of t2 are similar relative to some

similarity relation ∼

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 5

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

∀t1∀t2
((

R(t1) ∧ S(t2) ∧
∧

i∈[1,n]

t1[Ai] opi t2[Bi]
)
→

∧
j∈[1,m]

t1[Cj] op′
j t2[Dj]

)
where the operators opi and op′

j form the signature of the dependency

Do QIDs Apply to Graphs?

I Attributes correspond to properties of nodes

I But what about tuples? Do they correspond to nodes or edges, or something else?
I What about the labels of nodes and edges?
I Goal: compare nodes in specific subgraphs instead of tuples

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 5

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

∀t1∀t2
((

R(t1) ∧ S(t2) ∧
∧

i∈[1,n]

t1[Ai] opi t2[Bi]
)
→

∧
j∈[1,m]

t1[Cj] op′
j t2[Dj]

)
where the operators opi and op′

j form the signature of the dependency

Do QIDs Apply to Graphs?

I Attributes correspond to properties of nodes
I But what about tuples? Do they correspond to nodes or edges, or something else?

I What about the labels of nodes and edges?
I Goal: compare nodes in specific subgraphs instead of tuples

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 5

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

∀t1∀t2
((

R(t1) ∧ S(t2) ∧
∧

i∈[1,n]

t1[Ai] opi t2[Bi]
)
→

∧
j∈[1,m]

t1[Cj] op′
j t2[Dj]

)
where the operators opi and op′

j form the signature of the dependency

Do QIDs Apply to Graphs?

I Attributes correspond to properties of nodes
I But what about tuples? Do they correspond to nodes or edges, or something else?
I What about the labels of nodes and edges?

I Goal: compare nodes in specific subgraphs instead of tuples

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 5

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

∀t1∀t2
((

R(t1) ∧ S(t2) ∧
∧

i∈[1,n]

t1[Ai] opi t2[Bi]
)
→

∧
j∈[1,m]

t1[Cj] op′
j t2[Dj]

)
where the operators opi and op′

j form the signature of the dependency

Do QIDs Apply to Graphs?

I Attributes correspond to properties of nodes
I But what about tuples? Do they correspond to nodes or edges, or something else?
I What about the labels of nodes and edges?
I Goal: compare nodes in specific subgraphs instead of tuples

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 5

Identifying Subgraphs with Graph Patterns

I We use graph patterns to identify subgraphs in our quality dependencies for graphs

Graph Pattern
A graph pattern is a tuple Q = (XQ ,EQ , LQ)
where

I (XQ ,EQ) is a directed graph
I the nodes in XQ are called variables
I LQ is a function that assigns labels to

nodes/variables and edges

Note
Graph patterns do not refer to properties

Example (Graph Pattern)

x1

employee

x2

employee

y

project

works_on works_on

All pairs of employees x1, x2 working
on a common project y

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 6

Identifying Subgraphs with Graph Patterns

I We use graph patterns to identify subgraphs in our quality dependencies for graphs

Graph Pattern
A graph pattern is a tuple Q = (XQ ,EQ , LQ)
where

I (XQ ,EQ) is a directed graph
I the nodes in XQ are called variables
I LQ is a function that assigns labels to

nodes/variables and edges

Note
Graph patterns do not refer to properties

Example (Graph Pattern)

x1

employee

x2

employee

y

project

works_on works_on

All pairs of employees x1, x2 working
on a common project y

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 6

Matching Semantics

x1

employee

x2

employee

y

project

works_on works_on

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

Example Match hExample Match h′

Match
A match of a pattern Q = (XQ ,EQ , LQ) in a graph G = (V ,E , L,P)
is a function h : XQ → V such that

I LQ(x) = L(h(x)) for all x ∈ XQ I For all edges (x , y) ∈ EQ :
I (h(x), h(y)) ∈ E is an edge in G
I LQ(x , y) = L(h(x), h(y))

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

x1

employee

x2

employee

y

project

works_on works_on

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

Example Match hExample Match h′

Match
A match of a pattern Q = (XQ ,EQ , LQ) in a graph G = (V ,E , L,P)
is a function h : XQ → V such that

I LQ(x) = L(h(x)) for all x ∈ XQ I For all edges (x , y) ∈ EQ :
I (h(x), h(y)) ∈ E is an edge in G
I LQ(x , y) = L(h(x), h(y))

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

x1

employee

x2

employee

y

project

works_on works_on

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

Example Match h

Example Match h′

Match
A match of a pattern Q = (XQ ,EQ , LQ) in a graph G = (V ,E , L,P)
is a function h : XQ → V such that

I LQ(x) = L(h(x)) for all x ∈ XQ I For all edges (x , y) ∈ EQ :
I (h(x), h(y)) ∈ E is an edge in G
I LQ(x , y) = L(h(x), h(y))

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

x1

employee

x2

employee

y

project

works_on works_on

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

Example Match h

Example Match h′

Notes

I Multiple variables can be mapped to the same node

I A function h satisfying the definition of match is called a homomorphism
I We thus consider homomorphic matches
I There are many alternative matching semantics: Big Graph Processing Systems course

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

x1

employee

x2

employee

y

project

works_on works_on

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

Example Match h

Example Match h′

Notes

I Multiple variables can be mapped to the same node
I A function h satisfying the definition of match is called a homomorphism
I We thus consider homomorphic matches

I There are many alternative matching semantics: Big Graph Processing Systems course

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

x1

employee

x2

employee

y

project

works_on works_on

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

Example Match h

Example Match h′

Notes

I Multiple variables can be mapped to the same node
I A function h satisfying the definition of match is called a homomorphism
I We thus consider homomorphic matches
I There are many alternative matching semantics: Big Graph Processing Systems course

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 7

Graph Entity Dependencies1

Graph Entity Dependencies (GEDs)
A graph entity dependency (GED) has the following form

Q
(∧

i∈[1,n]

ϕi(xi , yi) →
∧

j∈[1,m]

ψj(zj , uj)
) I Q is graph pattern

I xi , yi , zj , uj are variables of Q
I ϕ and ψ are literals

Literals

I Property Equality: x [A] = y [B] iff properties A of x and B of y have the same value
I Equality with constant: x [A] =c y [B] iff properties A of x and B of y have value c
I Node Equality: x = y iff x and y represent the same node

1Fan and Lu, “Dependencies for Graphs”, Proceedings of the 36th ACM Symposium on Principles of Database
Systems, PODS 2017, 2017

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 8

Graph Entity Dependencies1

Graph Entity Dependencies (GEDs)
A graph entity dependency (GED) has the following form

Q
(∧

i∈[1,n]

ϕi(xi , yi) →
∧

j∈[1,m]

ψj(zj , uj)
) I Q is graph pattern

I xi , yi , zj , uj are variables of Q
I ϕ and ψ are literals

Literals

I Property Equality: x [A] = y [B] iff properties A of x and B of y have the same value
I Equality with constant: x [A] =c y [B] iff properties A of x and B of y have value c
I Node Equality: x = y iff x and y represent the same node

1Fan and Lu, “Dependencies for Graphs”, Proceedings of the 36th ACM Symposium on Principles of Database
Systems, PODS 2017, 2017

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 8

Graph Entity Dependencies1

Graph Entity Dependencies (GEDs)
A graph entity dependency (GED) has the following form

Q
(∧

i∈[1,n]

ϕi(xi , yi) →
∧

j∈[1,m]

ψj(zj , uj)
) I Q is graph pattern

I xi , yi , zj , uj are variables of Q
I ϕ and ψ are literals

Semantics
A graph G satisfies a GED with graph pattern Q = (XQ ,EQ , LQ) if

I for every match of h of Q in G:
I if (G, h(xi), h(yi)) |= ϕi(xi , yi) holds for all i ∈ [1, n]
I then (G, h(wj), h(uj)) |= ψj(xj , yj) holds for all i ∈ [1,m]

1Fan and Lu, “Dependencies for Graphs”, Proceedings of the 36th ACM Symposium on Principles of Database
Systems, PODS 2017, 2017

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 8

Graph Entity Dependencies – Example

Example

Graph Pattern Q1

z1

department

z2
department

x1

employee

x2
employee

y

project

works_on

works_on

assigned

assigned

Graph Entity Dependency

Q1

(
true → z1 = z2

)
If two employees work on the same
project, they are assigned to the
same department

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 9

Graph Entity Dependencies – Example

Example

Graph Pattern Q2

z1
department

z2
department

Graph Entity Dependency

Q2

(
z1[name] = z1[name] → z1[nr] = z1[nr]

)
If two departments have the same name,
they also have the same number

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 10

Graph Entity Dependencies – Example

Graph Entity Dependencies
If two employees work on the
same project, they are assigned
to the same department

I Not satisfied by G X

If two departments have the
same name,
they also have the same number

I Not satisfied by G X

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 11

Graph Entity Dependencies – Example

Graph Entity Dependencies
If two employees work on the
same project, they are assigned
to the same department

I Not satisfied by G X

If two departments have the
same name,
they also have the same number

I Not satisfied by G X

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 11

Graph Entity Dependencies – Example

Graph Entity Dependencies
If two employees work on the
same project, they are assigned
to the same department

I Not satisfied by G X

If two departments have the
same name,
they also have the same number

I Not satisfied by G X

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 11

Graph Entity Dependencies – Example

Graph Entity Dependencies
If two employees work on the
same project, they are assigned
to the same department

I Not satisfied by G X

If two departments have the
same name,
they also have the same number

I Not satisfied by G X

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

works_on
works_onworks_on

assignedassigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 11

GEDs vs. QIDs

GEDs vs. CFDs
CFDs can be translated into GEDs

I Every tuple in the database is interpreted as a node
I labelled with the relation it belongs to

I The graph pattern of the GED consists of two disconnect nodes labelled with R and S

GEDs vs. MDs

I GEDs do not support similarity operators
I and can therefore not mimic
I But they can be extended accordingly

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 12

GEDs vs. QIDs

GEDs vs. CFDs
CFDs can be translated into GEDs

I Every tuple in the database is interpreted as a node
I labelled with the relation it belongs to

I The graph pattern of the GED consists of two disconnect nodes labelled with R and S

GEDs vs. MDs

I GEDs do not support similarity operators
I and can therefore not mimic
I But they can be extended accordingly

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 12

Ingredients for the Repair Problem

Ingredients for the Repair Problem

1. Quality dependencies Check

I We consider Graph Entity Dependencies
2. A dirty graph database Check

3. A repair model
I What kind of operations are allowed to modify the database?
I Examples: tuple deletions, tuple insertions, value modifications

4. A cost model
I the repair should differ minimally
I Examples: number of deletions, edit distance

Goal
A clean graph that satisfies all the dependencies

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 13

Repair Model

Repair Model

I We discuss a variation of the V-Repair model, adapted for graphs
I It allows for changing values of properties

I It allows for merging nodes
I If two nodes v1, and v2 are merged into a new node w ,
I then w inherits all outgoing edges from v1 and v2,
I and all incoming edges of v1 and v2 are redirected to w

I Labels and edges cannot be changed directly

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 14

Repair Model

Repair Model

I We discuss a variation of the V-Repair model, adapted for graphs
I It allows for changing values of properties
I It allows for merging nodes

I If two nodes v1, and v2 are merged into a new node w ,
I then w inherits all outgoing edges from v1 and v2,
I and all incoming edges of v1 and v2 are redirected to w

I Labels and edges cannot be changed directly

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 14

Repair Model

Repair Model

I We discuss a variation of the V-Repair model, adapted for graphs
I It allows for changing values of properties
I It allows for merging nodes

I If two nodes v1, and v2 are merged into a new node w ,
I then w inherits all outgoing edges from v1 and v2,
I and all incoming edges of v1 and v2 are redirected to w

I Labels and edges cannot be changed directly

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 14

Repair Model – Example

Graph Entity Dependency
If two employees work on the
same project, they are assigned
to the same department

I Not satisfied by G X

I To repair G, we merge v5 and v6

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

assigned

works_on
works_onworks_on

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 15

Repair Model – Example

Graph Entity Dependency
If two employees work on the
same project, they are assigned
to the same department

I Not satisfied by G X

I To repair G, we merge v5 and v6

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

assigned

works_on
works_onworks_on

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 15

Repair Model – Example

Graph Entity Dependency
If two employees work on the
same project, they are assigned
to the same department

I Not satisfied by G X

I To repair G, we merge v5 and v6

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

works_on
works_onworks_on

assigned

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 15

Ingredients for the Repair Problem

Ingredients for the Repair Problem

1. Quality dependencies Check

I We consider Graph Entity Dependencies
2. A dirty graph database Check

3. A repair model Check
I Modification of property values, merging of nodes

4. A cost model Check
I the repair should differ minimally
I Examples: number of merges, edit distance

Goal
A clean graph that satisfies all the dependencies

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 16

Chasing Graphs

Recall: Chase Procedures

Idea

I We adapt the (extended) chase procedure for graphs and our repair model

Recall: Chase Procedures
The chase takes as input

I a set Σ of data quality rules; and
I an input database D,

and, if the chase terminates successfully, then it outputs a database D ′ such that D ′ |= Σ

Recall: Implementation

I The chase procedure can fire a dependency σ if σ is not satisfied
I σ is fired for a specific violation, which is then repaired (unless there is a conflict)

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 17

Recall: Chase Procedures

Idea

I We adapt the (extended) chase procedure for graphs and our repair model

Recall: Chase Procedures
The chase takes as input

I a set Σ of graph entity dependencies (GEDs); and
I a graph database G,

and, if the chase terminates successfully, then it outputs a clean graph G ′ satisfying Σ

Recall: Implementation

I The chase procedure can fire a dependency σ if σ is not satisfied
I σ is fired for a specific violation, which is then repaired (unless there is a conflict)

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 17

Recall: Chase Procedures

Idea

I We adapt the (extended) chase procedure for graphs and our repair model

Recall: Chase Procedures
The chase takes as input

I a set Σ of graph entity dependencies (GEDs); and
I a graph database G,

and, if the chase terminates successfully, then it outputs a clean graph G ′ satisfying Σ

Recall: Implementation

I The chase procedure can fire a dependency σ if σ is not satisfied
I σ is fired for a specific violation, which is then repaired (unless there is a conflict)

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 17

The Chase for GEDs

Let

σ = Q
(∧

i∈[1,n]

ϕi(xi , yi) → ψ(z, u)
)

be a graph entity dependency (GED) with graph pattern Q = (XQ ,EQ , LQ)

Firing of a GED

The GED σ can be fired on a graph G if there is a match h of Q in G such that
I (G, h(xi), h(yi)) |= ϕi holds for all i ∈ [1, n]
I but (G, h(z), h(u)) |= ψ(z, u) does not hold

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 18

The Chase for GEDs

Let

σ = Q
(∧

i∈[1,n]

ϕi(xi , yi) → ψ(z, u)
)

be a graph entity dependency (GED) with graph pattern Q = (XQ ,EQ , LQ)

Firing of a GED

The GED σ can be fired on a graph G if there is a match h of Q in G such that
I (G, h(xi), h(yi)) |= ϕi holds for all i ∈ [1, n]
I but (G, h(z), h(u)) |= ψ(z, u) does not hold

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 18

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G ′ = G
2. As long as there is

I a GED σ ∈ Σ with consequence ψ(z, u),
I and a match h

for which σ can be fired do

2.1 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)

2.2 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)

2.3 If ψ(z, u) has the form z[A] =c u[B] proceed analogously to cases 1 and 2 but set the value to c
and abort if the existing property does not have value c

2.4 If ψ(z, u) has the form z = u and the nodes h(z) and h(u) agree on all common properties and have
the same label, merge h(z) and h(u)

I The new node inherits all properties of h(z) and h(u)
2.5 If none of the other cases applies, abort

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G ′ = G
2. As long as there is

I a GED σ ∈ Σ with consequence ψ(z, u),
I and a match h

for which σ can be fired do
2.1 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)

2.2 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)

2.3 If ψ(z, u) has the form z[A] =c u[B] proceed analogously to cases 1 and 2 but set the value to c
and abort if the existing property does not have value c

2.4 If ψ(z, u) has the form z = u and the nodes h(z) and h(u) agree on all common properties and have
the same label, merge h(z) and h(u)

I The new node inherits all properties of h(z) and h(u)
2.5 If none of the other cases applies, abort

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G ′ = G
2. As long as there is

I a GED σ ∈ Σ with consequence ψ(z, u),
I and a match h

for which σ can be fired do
2.1 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)
2.2 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)

2.3 If ψ(z, u) has the form z[A] =c u[B] proceed analogously to cases 1 and 2 but set the value to c
and abort if the existing property does not have value c

2.4 If ψ(z, u) has the form z = u and the nodes h(z) and h(u) agree on all common properties and have
the same label, merge h(z) and h(u)

I The new node inherits all properties of h(z) and h(u)
2.5 If none of the other cases applies, abort

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G ′ = G
2. As long as there is

I a GED σ ∈ Σ with consequence ψ(z, u),
I and a match h

for which σ can be fired do
2.1 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)
2.2 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)
2.3 If ψ(z, u) has the form z[A] =c u[B] proceed analogously to cases 1 and 2 but set the value to c

and abort if the existing property does not have value c

2.4 If ψ(z, u) has the form z = u and the nodes h(z) and h(u) agree on all common properties and have
the same label, merge h(z) and h(u)

I The new node inherits all properties of h(z) and h(u)
2.5 If none of the other cases applies, abort

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G ′ = G
2. As long as there is

I a GED σ ∈ Σ with consequence ψ(z, u),
I and a match h

for which σ can be fired do
2.1 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)
2.2 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)
2.3 If ψ(z, u) has the form z[A] =c u[B] proceed analogously to cases 1 and 2 but set the value to c

and abort if the existing property does not have value c
2.4 If ψ(z, u) has the form z = u and the nodes h(z) and h(u) agree on all common properties and have

the same label, merge h(z) and h(u)
I The new node inherits all properties of h(z) and h(u)

2.5 If none of the other cases applies, abort

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G ′ = G
2. As long as there is

I a GED σ ∈ Σ with consequence ψ(z, u),
I and a match h

for which σ can be fired do
2.1 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)
2.2 If ψ(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,

create property B for h(u) and set its value to that of A of h(z)
2.3 If ψ(z, u) has the form z[A] =c u[B] proceed analogously to cases 1 and 2 but set the value to c

and abort if the existing property does not have value c
2.4 If ψ(z, u) has the form z = u and the nodes h(z) and h(u) agree on all common properties and have

the same label, merge h(z) and h(u)
I The new node inherits all properties of h(z) and h(u)

2.5 If none of the other cases applies, abort

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs – Example

Graph Entity Dependencies

I GED σ1:
If two departments have the same name,
they also have the same number

I GED σ2:
If two employees work on the same
project, they are assigned to the same
department

The Chase

1. Fire σ1 with a match for v5 and v6
I Set v6[nr] := v5[nr]

2. Fire σ2 with a match for v5, v6, v1, v2, v3
I Merge v5 and v6

3. No GED can be fired
I The chase terminates successfully

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

assigned

works_on
works_onworks_on

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 20

The Chase for GEDs – Example

Graph Entity Dependencies

I GED σ1:
If two departments have the same name,
they also have the same number

I GED σ2:
If two employees work on the same
project, they are assigned to the same
department

The Chase

1. Fire σ1 with a match for v5 and v6
I Set v6[nr] := v5[nr]

2. Fire σ2 with a match for v5, v6, v1, v2, v3
I Merge v5 and v6

3. No GED can be fired
I The chase terminates successfully

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”

department

assigned

works_on
works_onworks_on

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 20

The Chase for GEDs – Example

Graph Entity Dependencies

I GED σ1:
If two departments have the same name,
they also have the same number

I GED σ2:
If two employees work on the same
project, they are assigned to the same
department

The Chase

1. Fire σ1 with a match for v5 and v6
I Set v6[nr] := v5[nr]

2. Fire σ2 with a match for v5, v6, v1, v2, v3
I Merge v5 and v6

3. No GED can be fired
I The chase terminates successfully

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”
nr= 42

department

assigned

works_on
works_onworks_on

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 20

The Chase for GEDs – Example

Graph Entity Dependencies

I GED σ1:
If two departments have the same name,
they also have the same number

I GED σ2:
If two employees work on the same
project, they are assigned to the same
department

The Chase

1. Fire σ1 with a match for v5 and v6
I Set v6[nr] := v5[nr]

2. Fire σ2 with a match for v5, v6, v1, v2, v3
I Merge v5 and v6

3. No GED can be fired
I The chase terminates successfully

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

v6 name= “IT”
nr= 42

department

assigned

works_on
works_onworks_on

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 20

The Chase for GEDs – Example

Graph Entity Dependencies

I GED σ1:
If two departments have the same name,
they also have the same number

I GED σ2:
If two employees work on the same
project, they are assigned to the same
department

The Chase

1. Fire σ1 with a match for v5 and v6
I Set v6[nr] := v5[nr]

2. Fire σ2 with a match for v5, v6, v1, v2, v3
I Merge v5 and v6

3. No GED can be fired
I The chase terminates successfully

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

works_on
works_onworks_on

assigned

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 20

The Chase for GEDs – Example

Graph Entity Dependencies

I GED σ1:
If two departments have the same name,
they also have the same number

I GED σ2:
If two employees work on the same
project, they are assigned to the same
department

The Chase

1. Fire σ1 with a match for v5 and v6
I Set v6[nr] := v5[nr]

2. Fire σ2 with a match for v5, v6, v1, v2, v3
I Merge v5 and v6

3. No GED can be fired
I The chase terminates successfully

v1
name= “Lucy”
role= “manager”

employee

v3 title= “Website Sales”
due-date= 2025-12-10

project

v2 name= “Alex”
role= “developer”

employee

v4 title= “Payment Proc.”
due-date= 2026-04-28

project

v5 name= “IT”
nr= 42

department

works_on
works_onworks_on

assigned

assigned

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 20

Properties of the Chase for Graphs and GEDs

The chase procedure for graphs and GEDs has two important properties

Chasing with GEDs is Finite

The chase always terminates after a finite number of steps

Chasing with GEDs has the Church-Rosser Property

For all graphs G, and a sets Σ of GEDs, the chase either
I always returns the same repair for G and Σ; or
I always aborts due to a conflict

regardless in which order and for which errors GEDs are fired

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 21

Properties of the Chase for Graphs and GEDs

The chase procedure for graphs and GEDs has two important properties

Chasing with GEDs is Finite

The chase always terminates after a finite number of steps

Chasing with GEDs has the Church-Rosser Property

For all graphs G, and a sets Σ of GEDs, the chase either
I always returns the same repair for G and Σ; or
I always aborts due to a conflict

regardless in which order and for which errors GEDs are fired

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 21

Properties of the Chase for Graphs and GEDs

The chase procedure for graphs and GEDs has two important properties

Chasing with GEDs is Finite

The chase always terminates after a finite number of steps

Chasing with GEDs has the Church-Rosser Property

For all graphs G, and a sets Σ of GEDs, the chase either
I always returns the same repair for G and Σ; or
I always aborts due to a conflict

regardless in which order and for which errors GEDs are fired

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 21

Reasoning about GEDs

Reasoning about GEDs: The Satisfiability Problem

The Satisfiability Problem

Input: A finite set Σ of GEDs
Question: Is there a non-trivial graph G that satisfies all dependencies in Σ?

Goal
Automatically Verifying that a set of GEDs is consistent

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.4)

The satisfiability problem for GEDs is coNP-complete

I For CFDs in the relational setting, satisfiability is NP-complete
I But in PTIME, if the relational schema does not enforce finite domains for attributes!
I Since our graphs have no schema, the difficulty is not inherited from CFDs

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 22

Reasoning about GEDs: The Satisfiability Problem

The Satisfiability Problem

Input: A finite set Σ of GEDs
Question: Is there a non-trivial graph G that satisfies all dependencies in Σ?

Goal
Automatically Verifying that a set of GEDs is consistent

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.4)

The satisfiability problem for GEDs is coNP-complete

I For CFDs in the relational setting, satisfiability is NP-complete

I But in PTIME, if the relational schema does not enforce finite domains for attributes!
I Since our graphs have no schema, the difficulty is not inherited from CFDs

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 22

Reasoning about GEDs: The Satisfiability Problem

The Satisfiability Problem

Input: A finite set Σ of GEDs
Question: Is there a non-trivial graph G that satisfies all dependencies in Σ?

Goal
Automatically Verifying that a set of GEDs is consistent

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.4)

The satisfiability problem for GEDs is coNP-complete

I For CFDs in the relational setting, satisfiability is NP-complete
I But in PTIME, if the relational schema does not enforce finite domains for attributes!

I Since our graphs have no schema, the difficulty is not inherited from CFDs

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 22

Reasoning about GEDs: The Satisfiability Problem

The Satisfiability Problem

Input: A finite set Σ of GEDs
Question: Is there a non-trivial graph G that satisfies all dependencies in Σ?

Goal
Automatically Verifying that a set of GEDs is consistent

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.4)

The satisfiability problem for GEDs is coNP-complete

I For CFDs in the relational setting, satisfiability is NP-complete
I But in PTIME, if the relational schema does not enforce finite domains for attributes!
I Since our graphs have no schema, the difficulty is not inherited from CFDs

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 22

Reasoning about GEDs: The Implication Problem

The Implication Problem

Input: A finite set Σ of GEDs, a GED σ

Question: Does Σ imply σ?

Goals
Solving the implication problem allows for

I reducing the number of dependencies
I inferring new knowledge

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.12)

The implication problem for GEDs is NP-complete

I For CFDs in the relational setting, the implication problem is NP-complete

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 23

Reasoning about GEDs: The Implication Problem

The Implication Problem

Input: A finite set Σ of GEDs, a GED σ

Question: Does Σ imply σ?

Goals
Solving the implication problem allows for

I reducing the number of dependencies
I inferring new knowledge

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.12)

The implication problem for GEDs is NP-complete

I For CFDs in the relational setting, the implication problem is NP-complete

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 23

Reasoning about GEDs: The Implication Problem

The Implication Problem

Input: A finite set Σ of GEDs, a GED σ

Question: Does Σ imply σ?

Goals
Solving the implication problem allows for

I reducing the number of dependencies
I inferring new knowledge

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.12)

The implication problem for GEDs is NP-complete

I For CFDs in the relational setting, the implication problem is NP-complete

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 23

Reasoning about GEDs: The Error Detection Problem

The Error Detection Problem

Input: A finite set Σ of GEDs, a graph G
Question: Does G not satisfy Σ?

Goal
Verify whether a graph satisfies dependencies, or needs to be repaired

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.16)

The error detection problem for GEDs is NP-complete, even if G is a tree

I For CFDs in the relational setting, the error detection problem is in PTIME

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 24

Reasoning about GEDs: The Error Detection Problem

The Error Detection Problem

Input: A finite set Σ of GEDs, a graph G
Question: Does G not satisfy Σ?

Goal
Verify whether a graph satisfies dependencies, or needs to be repaired

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.16)

The error detection problem for GEDs is NP-complete, even if G is a tree

I For CFDs in the relational setting, the error detection problem is in PTIME

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 24

Reasoning about GEDs: The Error Detection Problem

The Error Detection Problem

Input: A finite set Σ of GEDs, a graph G
Question: Does G not satisfy Σ?

Goal
Verify whether a graph satisfies dependencies, or needs to be repaired

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.16)

The error detection problem for GEDs is NP-complete, even if G is a tree

I For CFDs in the relational setting, the error detection problem is in PTIME

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 24

The Frontier of Graph Repairs

A Family of Graph Dependencies

GEDs
Fan and Lu, 2019

GFDs
Fan and Lu, 2019

GKeys
Fan and Lu, 2019

GQRs
Fan, Lu, et al., 2019

GDCs
Fan and Lu, 2019

GARs
Fan, 2022

GDDs
Kwashie et al., 2019

NGDs
Fan, Liu, et al., 2020

positive GARs
Fan, Jin, et al., 2020

GCRs
Fan, Fu, et al., 2023

GGDs
Shimomura et al., 2022

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 25

A Family of Graph Dependencies

GEDs
Fan and Lu, 2019

GFDs
Fan and Lu, 2019

GKeys
Fan and Lu, 2019

GQRs
Fan, Lu, et al., 2019

GDCs
Fan and Lu, 2019

GARs
Fan, 2022

GDDs
Kwashie et al., 2019

NGDs
Fan, Liu, et al., 2020

positive GARs
Fan, Jin, et al., 2020

GCRs
Fan, Fu, et al., 2023

GGDs
Shimomura et al., 2022

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 25

Outlook: Property Graphs

p1
name = “Alex”
access_level = 6

{:person}

t1 start = 2023-02-01
due = 2026-12-10

{:task}

d1
#pages = 115
access_level = 4

{:document, :important}

d3
#pages = 42
access_level = 7{:document, :important}t2 start = 2024-05-10

due = 2027-05-10
{:task} d2

#pages = 12
access_level = 5

{:document}

{:works_on}

since= 2023-04-02

w1 {:references}r1

{:references}
on_page= 2

r4{:references}
on_page= 58

r3{:manages}m1

{:references}
r2

Property Graphs

I Nodes and edges can have multiple labels
I Multi-graphs: there can be more than edge

between two nodes
I Nodes and edges can have properties

I Part of the ISO standard for GQL
I ISO/IEC 39075:2024
I GQL is a query language for property graphs
I Published in April 2024

I More in the “Big Graph Processing Systems”
course in January/February 2026

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 26

https://www.iso.org/standard/76120.html

Outlook: Property Graphs

p1
name = “Alex”
access_level = 6

{:person}

t1 start = 2023-02-01
due = 2026-12-10

{:task}

d1
#pages = 115
access_level = 4

{:document, :important}

d3
#pages = 42
access_level = 7{:document, :important}t2 start = 2024-05-10

due = 2027-05-10
{:task} d2

#pages = 12
access_level = 5

{:document}

{:works_on}

since= 2023-04-02

w1 {:references}r1

{:references}
on_page= 2

r4{:references}
on_page= 58

r3{:manages}m1

{:references}
r2

Property Graphs

I Nodes and edges can have multiple labels
I Multi-graphs: there can be more than edge

between two nodes
I Nodes and edges can have properties

I Part of the ISO standard for GQL
I ISO/IEC 39075:2024
I GQL is a query language for property graphs
I Published in April 2024

I More in the “Big Graph Processing Systems”
course in January/February 2026

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 26

https://www.iso.org/standard/76120.html

Outlook: Property Graphs

p1
name = “Alex”
access_level = 6

{:person}

t1 start = 2023-02-01
due = 2026-12-10

{:task}

d1
#pages = 115
access_level = 4

{:document, :important}

d3
#pages = 42
access_level = 7{:document, :important}t2 start = 2024-05-10

due = 2027-05-10
{:task} d2

#pages = 12
access_level = 5

{:document}

{:works_on}

since= 2023-04-02

w1 {:references}r1

{:references}
on_page= 2

r4{:references}
on_page= 58

r3{:manages}m1

{:references}
r2

Property Graphs

I Nodes and edges can have multiple labels
I Multi-graphs: there can be more than edge

between two nodes
I Nodes and edges can have properties

I Part of the ISO standard for GQL
I ISO/IEC 39075:2024
I GQL is a query language for property graphs
I Published in April 2024

I More in the “Big Graph Processing Systems”
course in January/February 2026

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 26

https://www.iso.org/standard/76120.html

Outlook: GQL and PG-Constraints

GDCs
and related notions

x
:city

y
:city

z
:country

:located in

:located in

(
x 6= y x .name 6= y .name

)
⇒

Pattern with variables x , y , z, . . .
Dependency X ⇒ Y

Check The satisfiability, validation, and
implication problems have been studied2

Check Data cleaning has been studied3 for GDCs
without ≤ and ≥

X Not a “good” fit for property graphs
I Single labels, no transitivity, etc.

PG-Constraints
FOR x, y, z
MATCH (x:city)-[:located in]->(z:country),

(y:city)-[:located in]->(z)
FILTER x != y
MANDATORY x.name, y.name
FILTER x.name != y.name

Check Designed for property graphs

○ Expressive and extensive
I since they are based on GQL

X No formal results

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 27

Outlook: GQL and PG-Constraints

GDCs
and related notions

x
:city

y
:city

z
:country

:located in

:located in

(
x 6= y x .name 6= y .name

)
⇒

Pattern with variables x , y , z, . . .
Dependency X ⇒ Y

Check The satisfiability, validation, and
implication problems have been studied2

Check Data cleaning has been studied3 for GDCs
without ≤ and ≥

X Not a “good” fit for property graphs
I Single labels, no transitivity, etc.

PG-Constraints
FOR x, y, z
MATCH (x:city)-[:located in]->(z:country),

(y:city)-[:located in]->(z)
FILTER x != y
MANDATORY x.name, y.name
FILTER x.name != y.name

Check Designed for property graphs

○ Expressive and extensive
I since they are based on GQL

X No formal results

3Fan and Lu, “Dependencies for Graphs”, ACM Transactions on Database Systems, 2019.
3Fan, Lu, et al., “Deducing Certain Fixes to Graphs”, Proceedings of the VLDB Endowment, 2019.

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 27

Outlook: GQL and PG-Constraints

GDCs
and related notions

x
:city

y
:city

z
:country

:located in

:located in

(
x 6= y x .name 6= y .name

)
⇒

Pattern with variables x , y , z, . . .
Dependency X ⇒ Y

Check The satisfiability, validation, and
implication problems have been studied2

Check Data cleaning has been studied3 for GDCs
without ≤ and ≥

X Not a “good” fit for property graphs
I Single labels, no transitivity, etc.

PG-Constraints
FOR x, y, z
MATCH (x:city)-[:located in]->(z:country),

(y:city)-[:located in]->(z)
FILTER x != y
MANDATORY x.name, y.name
FILTER x.name != y.name

Check Designed for property graphs

○ Expressive and extensive
I since they are based on GQL

X No formal results

3Fan and Lu, “Dependencies for Graphs”, ACM Transactions on Database Systems, 2019.
3Fan, Lu, et al., “Deducing Certain Fixes to Graphs”, Proceedings of the VLDB Endowment, 2019.

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 27

Outlook: GQL and PG-Constraints

GDCs
and related notions

x
:city

y
:city

z
:country

:located in

:located in

(
x 6= y x .name 6= y .name

)
⇒

Pattern with variables x , y , z, . . .
Dependency X ⇒ Y

Check The satisfiability, validation, and
implication problems have been studied2

Check Data cleaning has been studied3 for GDCs
without ≤ and ≥

X Not a “good” fit for property graphs
I Single labels, no transitivity, etc.

PG-Constraints
FOR x, y, z
MATCH (x:city)-[:located in]->(z:country),

(y:city)-[:located in]->(z)
FILTER x != y
MANDATORY x.name, y.name
FILTER x.name != y.name

Check Designed for property graphs

○ Expressive and extensive
I since they are based on GQL

X No formal results

3Fan and Lu, “Dependencies for Graphs”, ACM Transactions on Database Systems, 2019.
3Fan, Lu, et al., “Deducing Certain Fixes to Graphs”, Proceedings of the VLDB Endowment, 2019.

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 27

Dependencies for Path Constraints

p1
name = “Alex”
access_level = 6

{:person}

t1 start = 2023-02-01
due = 2026-12-10

{:task}

d1
#pages = 115
access_level = 4

{:document, :important}

d3
#pages = 42
access_level = 7{:document, :important}t2 start = 2024-05-10

due = 2027-05-10
{:task} d2

#pages = 12
access_level = 5

{:document}

{:works_on}

since= 2023-04-02

w1 {:references}r1

{:references}
on_page= 2

r4{:references}
on_page= 58

r3{:manages}m1

{:references}
r2

Constraint
If a person works on a task, which has started and which references directly or indirectly,
an important document, then the person’s access level is at least as high as the (re-
quired) access level of the referenced document.

I This constraint cannot be described by a GED, since it talks about arbitrary length paths

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 28

Dependencies for Path Constraints

p1
name = “Alex”
access_level = 6

{:person}

t1 start = 2023-02-01
due = 2026-12-10

{:task}

d1
#pages = 115
access_level = 4

{:document, :important}

d3
#pages = 42
access_level = 7{:document, :important}t2 start = 2024-05-10

due = 2027-05-10
{:task} d2

#pages = 12
access_level = 5

{:document}

{:works_on}

since= 2023-04-02

w1 {:references}r1

{:references}
on_page= 2

r4{:references}
on_page= 58

r3{:manages}m1

{:references}
r2

Constraint
If a person works on a task, which has started and which references directly or indirectly,
an important document, then the person’s access level is at least as high as the (re-
quired) access level of the referenced document.

I This constraint cannot be described by a GED, since it talks about arbitrary length paths

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 28

Summary

Data Quality for Graphs

I Graph entity dependencies (GEDs) are a formalism for data quality rules for graphs
I They cover CFDs from the relational setting (and more)

I Graph patterns are used to identify subgraphs
I The chase can be adapted for GEDs
I Research in this area is still ongoing!

Take away message

Data quality for graphs: a rich source of problems and challenges

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 29

Summary

Data Quality for Graphs

I Graph entity dependencies (GEDs) are a formalism for data quality rules for graphs
I They cover CFDs from the relational setting (and more)

I Graph patterns are used to identify subgraphs
I The chase can be adapted for GEDs
I Research in this area is still ongoing!

Take away message

Data quality for graphs: a rich source of problems and challenges

cbna © Christopher Spinrath – christopher.spinrath@liris.cnrs.fr 29

References

Fan, Wenfei. “Big Graphs: Challenges and Opportunities”. In: Proceedings of the VLDB
Endowment 15.12 (2022), pp. 3782–3797. doi: 10.14778/3554821.3554899.
Fan, Wenfei, Wenzhi Fu, Ruochun Jin, Muyang Liu, Ping Lu, and Chao Tian. “Making It Tractable

to Catch Duplicates and Conflicts in Graphs”. In: Proceedings of the ACM on Management of
Data 1.1 (May 26, 2023), pp. 1–28. doi: 10.1145/3588940.
Fan, Wenfei, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. “Capturing

Associations in Graphs”. In: Proceedings of the VLDB Endowment 13.11 (2020), pp. 1863–1876.
url: http://www.vldb.org/pvldb/vol13/p1863-fan.pdf.
Fan, Wenfei, Xueli Liu, Ping Lu, and Chao Tian. “Catching Numeric Inconsistencies in Graphs”. In:

ACM Transactions on Database Systems 45.2 (June 30, 2020), pp. 1–47. doi: 10.1145/3385031.
Fan, Wenfei and Ping Lu. “Dependencies for Graphs”. In: Proceedings of the 36th ACM

Symposium on Principles of Database Systems, PODS 2017. Ed. by Emanuel Sallinger,
Jan Van den Bussche, and Floris Geerts. ACM, 2017, pp. 403–416. doi:
10.1145/3034786.3056114. url: https://doi.org/10.1145/3034786.3056114.

https://doi.org/10.14778/3554821.3554899
https://doi.org/10.1145/3588940
http://www.vldb.org/pvldb/vol13/p1863-fan.pdf
https://doi.org/10.1145/3385031
https://doi.org/10.1145/3034786.3056114
https://doi.org/10.1145/3034786.3056114

Fan, Wenfei and Ping Lu. “Dependencies for Graphs”. In: ACM Transactions on Database Systems
(Feb. 13, 2019), pp. 1–40. doi: 10.1145/3287285.
Fan, Wenfei, Ping Lu, Chao Tian, and Jingren Zhou. “Deducing Certain Fixes to Graphs”. In:

Proceedings of the VLDB Endowment 12.7 (Mar. 2019), pp. 752–765. doi:
10.14778/3317315.3317318.
Kwashie, Selasi, Lin Liu, Jixue Liu, Markus Stumptner, Jiuyong Li, and Lujing Yang. “Certus: An

Effective Entity Resolution Approach with Graph Differential Dependencies (GDDs)”. In:
Proceedings of the VLDB Endowment 12.6 (Feb. 2019), pp. 653–666. doi:
10.14778/3311880.3311883.
Shimomura, Larissa C., Nikolay Yakovets, and George Fletcher. “Reasoning on Property Graphs

with Graph Generating Dependencies”. In: (2022). doi: 10.48550/ARXIV.2211.00387. url:
https://arxiv.org/abs/2211.00387 (visited on 03/28/2024).

https://doi.org/10.1145/3287285
https://doi.org/10.14778/3317315.3317318
https://doi.org/10.14778/3311880.3311883
https://doi.org/10.48550/ARXIV.2211.00387
https://arxiv.org/abs/2211.00387

	Chasing Graphs
	Reasoning about GEDs
	The Frontier of Graph Repairs
	References

