Data Processing and Analytics (DISS-DPA)
Principles of Data Quality — Data Quality Rules for Graphs

Christopher Spinrath
Database Group (BD) — CNRS — LIRIS — Université Lyon 1

Fall 2025

This presentation is licensed under the Creative Commons
@@@@ Attribution-NonCommercial-ShareAlike 4.0 International license
BY NC_SA

Copyright © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en

Previously

» Data quality is an important problem in data management
» Dirty data is everywhere and costly
» A principled approach to detect and repair errors

» Using quality improving dependencies (QIDs)
» Capturing conditional functional dependencies (CFDs), matching dependencies (MDs), etc.

@®®®@ © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 1

Previously

» Data quality is an important problem in data management
» Dirty data is everywhere and costly
» A principled approach to detect and repair errors

» Using quality improving dependencies (QIDs)
» Capturing conditional functional dependencies (CFDs), matching dependencies (MDs), etc.

In this Episode

Can we transfer these techniques from the relational setting to graphs?

» Instead of a relational database consisting of tables, a database is represented by a graph

@®®®@ © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 1

Data Model: Graphs with Labels and Properties

Data Model department
department

In this chapter, we represent a database by a Eermmjz“lT” Dname:“lT”

directed graphs G = (V, E, L, P) where 7Y A
. assigned assigned
» V is a set of nodes g employee employee
» E is a set of edges name = “Lucy” “Alex”
role = "manager” “developer”
NS~
works_on wot works_on
Y y
B title = "Website Sales” o title = "Payment Proc
due-date =2025-12-10 due-date = 2026-04-28
project project

@®®®@ © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 2

Data Model: Graphs with Labels and Properties

Data Model department
department
In this chapter, we represent a database by a name4:2”IT” E—T—
. nr= G)
directed graphs G = (V, E, L, P) where 7Y A
i igned assigned
» V is a set of nodes assigne employee employee
» E is a set of edges a name = “Lucy” “Alex” I
. . . role = "manager” “developer”
» L is a function that assigns : 2
» a label L(v) to every node v € V works_on works_on
» a label L(e) to every edge e € E y A
B title = "Website Sales” o title = "Payment Proc”
due-date =2025-12-10 due-date = 2026-04-28
project project

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

Data Model: Graphs with Labels and Properties

Data Model department
department
In this chapter, we represent a database by a name = “IT" ad-—)
. =42 —
directed graphs G = (V, E, L, P) where il i 3
i igned assigned
» V is a set of nodes assigne employee employee
» E is a set of edges a name = “Lucy” “Alex” I
. . . role = "manager” “developer”
» L is a function that assigns : 2
» a label L(v) to every node v € V works_on works_on
» a label L(e) to every edge e € E y A
. . . title = "Website Sales” title = "Payment Proc”
» P is a function that assigns due-date =2025-12-10] due-date = 2026-04-28]
» a set of key-value pairs, called project project

properties, to every node v € V

@®®®@ © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 2

Recall: Ingredients for the Repair Problem

Recall: Ingredients for the Repair Problem

1. Quality dependencies
» We considered quality improving dependencies

2. A dirty relational database

3. A repair model
» What kind of operations are allowed to modify the database?
» Examples: tuple deletions, tuple insertions, value modifications

4. A cost model

» the repair should differ minimally
» Examples: number of deletions, edit distance

Goal
A clean database that satisfies all the dependencies

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

Recall: Ingredients for the Repair Problem

Recall: Ingredients for the Repair Problem

1. Quality dependencies
» We considered quality improving dependencies
» Are they applicable to graphs?
2. A dirty graph database
3. A repair model
» What kind of operations are allowed to modify the database?
» Examples: tuple-deletions—tuple-insertions, value modifications
4. A cost model

» the repair should differ minimally
» Examples: number of deletions, edit distance

Goal
A clean graph that satisfies all the dependencies

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr

Recall: Data Improving Dependencies

Recall: Data Improving Dependencies (QIDs)

Formalism for data quality rules that covers
» Functional Dependencies (FDs)
» Conditional Functional Dependencies (CFDs)
» Matching Dependencies (MDs)

Example (A CFD written as a QID)

“In the UK, the zip code uniquely determines the street”
Yt Vty ((Address(tl) A Address(ta)A

ti [zip] = ta[zip] A t1[CC] = t[CC] A £;[CC] = 44) — t;[street] = tg[street])

@®®®@ © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 4

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

Vt1Vt2((R(t1)/\5(t2)/\ A tlA]op; &[B]) = A\ tlG] op, tQ[DJ-})

i€lLn] jel,m

where the operators op; and opj/- form the signature of the dependency

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 5

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

Vt1Vt2((R(t1)/\5(t2)/\ A tlA]op; &[B]) = A\ tlG] op, tQ[DJ-})

i€lLn] jel,m

where the operators op; and opj/- form the signature of the dependency

Operators

» Equality: t1[A] = t2[B] iff attribute A of t; and B of t; have the same value
» Equality with constant: t,[A] =, t2[B] iff attribute A of t; and B of t; have value ¢

» Similarity: t;[A] ~ to[B] iff the values of attribute A of t; and B of ty are similar relative to some
similarity relation ~

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

wmQ((R(rl) AS(t) A N\ tlAlop; a[B]) > A ulG]op, tQ[DJ-})
i€[1,n] Jelt,m]
where the operators op; and opj/- form the signature of the dependency
Do QIDs Apply to Graphs?

» Attributes correspond to properties of nodes

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form
wmQ((R(rl) AS(t) A N\ tlAlop; a[B]) > A ulG]op, tQ[DJ-})
i€[1,n] JE[1,m]
where the operators op; and opj/- form the signature of the dependency

Do QIDs Apply to Graphs?

» Attributes correspond to properties of nodes
» But what about tuples? Do they correspond to nodes or edges, or something else?

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form
wmQ((R(rl) AS(t) A N\ tlAlop; a[B]) > A ulG]op, tQ[DJ-})
i€[1,n] JE[1,m]

where the operators op; and opj/- form the signature of the dependency

Do QIDs Apply to Graphs?

» Attributes correspond to properties of nodes
» But what about tuples? Do they correspond to nodes or edges, or something else?

» What about the labels of nodes and edges?

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr

Recall: Data Improving Dependencies

Quality Improving Dependency (QID)

A quality improving dependency (QID) is a first-order sentence of the following form

Vt1Vt2((R(t1)/\5(t2)/\ A tlA]op; &[B]) = A\ tlG] op, tQ[DJ-})

i€lLn] jel,m

where the operators op; and opj/- form the signature of the dependency

Do QIDs Apply to Graphs?

» Attributes correspond to properties of nodes
» But what about tuples? Do they correspond to nodes or edges, or something else?
» What about the labels of nodes and edges?

» Goal: compare nodes in specific subgraphs instead of tuples

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 5

Identifying Subgraphs with Graph Patterns

» We use graph patterns to identify subgraphs in our quality dependencies for graphs

Graph Pattern Example (Graph Pattern)
A graph pattern is a tuple Q@ = (Xg, Eg, Lg) employee employee

where e @
» (Xg, Eg) is a directed graph

» the nodes in Xg are called variables

works_on works_on
» Lq is a function that assigns labels to
nodes/variables and edges °
project

All pairs of employees x1, xo working
on a common project y

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr

Identifying Subgraphs with Graph Patterns

» We use graph patterns to identify subgraphs in our quality dependencies for graphs

Graph Pattern Example (Graph Pattern)
A graph pattern is a tuple Q@ = (Xg, Eg, Lg) employee employee

where e @
» (Xg, Eg) is a directed graph

» the nodes in Xg are called variables

works_on works_on
» Lq is a function that assigns labels to
nodes/variables and edges °
Note project
Graph patterns do not refer to properties All pairs of employees x1, xo working

on a common project y

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr

ching Semantics

employee employee department department
name = "IT" 1
o0 - e
[.
assigned assigned
works_on ‘works_on employee employee
name = "Lucy” “Alex"
Vi " “ "
0 role = "manager developer
project works_on wo works_on
\ 4 A 4
Pl title= “Website Sales” P title= “Payment Proc.”
ll due-date = 2025-12-10 due-date = 2026-04-28
project project

Match

A match of a pattern Q = (Xg, Eg,Lg) in a graph G = (V,E,L,P)
is a function h: Xg — V such that

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

employee employee department

department
name = "[T" =
() () ﬂ o Ae-)
7y J]
assigned assigned
works_on ‘works_on employee employee
name = "Lucy”] “Alex"
role = "manager” “developer”
0 o‘yé)’“
project works_on W works_on
\ 4 A 4
title = "Website Sa\es”] title = “Payment Proc."]
due-date = 2025-12-10 due-date = 2026-04-28
project project

Match
A match of a pattern Q = (Xg, Eg,Lg) in a graph G = (V,E,L,P)
is a function h: Xg — V such that
> Lo(x) = L(h(x)) for all x € Xq » For all edges (x,y) € Eg:
» (h(x),h(y)) € E is an edge in G
> Lo(x,y) = L(h(x), h(y))

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

employee employee department

department
name = "[T" G =]
AT 42 name = "IT
— - 4
assigned AL assigned

employee S ~employee

P name = “Lucy”
1 “ "
role = "manager

“Alex”
“developer”

project T ea works_on WO works_on
IRREETN v v
Pl title= “Website Sales” P title= “Payment Proc.”
Example Match h ll due-date = 2025-12-10 due-date = 2026-04-28
project project

Match
A match of a pattern Q = (Xg, Eg,Lg) in a graph G = (V,E,L,P)
is a function h: Xg — V such that
> Lo(x) = L(h(x)) for all x € Xq » For all edges (x,y) € Eg:
» (h(x),h(y)) € E is an edge in G
> Lo(x,y) = L(h(x), h(y))

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

employee employee department

department
Gname:“lT” —
~ nr =42 Gname: T]
Tl Y [
Ts~.__T~<_ assigned assigned
works_on . hE PN ; N employee employee

Vi

name = “Lucy”]

“Alex”
“developer”

role = "manager”
project T ea works_on wo works_on
IRREETN v v
Pl title= “Website Sales” P title= “Payment Proc.”
Example Match A Bl due-date =2025-12-10 due-date = 2026-04-28
project project

Notes

» Multiple variables can be mapped to the same node

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

employee employee department department
ﬂ il Ae-)
.. nr =42 I:::me =17
AR A .
) Seell N Sel N assigned | \ assigned
works_on _ RN employee employee

name = "Lucy”]

“Alex”
“developer”

vy .
role = "manager
- A\
...... ‘\‘5/0
project "= =-. works_on WO works_on
IRREETN v v
Pl title= “Website Sales” P title= “Payment Proc.”
Example Match A Bl due-date =2025-12-10 due-date = 2026-04-28
project project

Notes

» Multiple variables can be mapped to the same node
» A function h satisfying the definition of match is called a homomorphism

» We thus consider homomorphic matches

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 7

Matching Semantics

employee employee department department
ﬂ gl Ae-)
.. nr =42 I:::me =17
AR A .
. Seell N Sel N assigned | \ assigned
works_on _ RN employee employee

W name = Lucy]

role = "manager”

“Alex”
“developer”

- o
_____ o~
project "= =-. works_on WO works_on
IRREETN v v
Pl title= “Website Sales” P title= “Payment Proc.”
Example Match A’ lll due-date =2025-12-10 due-date = 2026-04-28
project project

Notes

» Multiple variables can be mapped to the same node
» A function h satisfying the definition of match is called a homomorphism

» We thus consider homomorphic matches
» There are many alternative matching semantics: Big Graph Processing Systems course

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

Graph Entity Dependencies’

Graph Entity Dependencies (GEDs)
A graph entity dependency (GED) has the following form
» Q is graph pattern

> X, Vi, Z;, u; are variables of @
Q(/\ @i(xi, yi) — /\ ¥z, “j)) o

ie[,n] jelt,m] » ¢ and ¢ are literals

LFan and Lu, “Dependencies for Graphs”, Proceedings of the 36th ACM Symposium on Principles of Database
Systems, PODS 2017, 2017

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 8

Graph Entity Dependencies!

Graph Entity Dependencies (GEDs)

A graph entity dependency (GED) has the following form
» Q is graph pattern
> X,V Z, U are variables of @
Q(/\ @i(xi, yi) — /\ ¥z, “j)) o

i) ieltm] » ¢ and ¢ are literals

Literals

» Property Equality: x[A] = y[B] iff properties A of x and B of y have the same value
» Equality with constant: x[A] = y[B] iff properties A of x and B of y have value ¢

» Node Equality: x = y iff x and y represent the same node

LFan and Lu, “Dependencies for Graphs”, Proceedings of the 36th ACM Symposium on Principles of Database
Systems, PODS 2017, 2017

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 8

Graph Entity Dependencies!

Graph Entity Dependencies (GEDs)
A graph entity dependency (GED) has the following form
» Q is graph pattern
> X,V Z, U are variables of @
Q(/\ pi(xi, yi) = /\ ¥z, Uj)) o

i) ieltm] » ¢ and ¢ are literals

Semantics
A graph G satisfies a GED with graph pattern Q = (Xo, Eq, Lg) if
» for every match of h of Q in G:

» if (G, h(xi),h(yi)) = pi(xi,yi) holds for all i € [1, n]
» then (G, h(w;), h(u))) | ¥;(x;, y;) holds for all i € [1, m]

LFan and Lu, “Dependencies for Graphs”, Proceedings of the 36th ACM Symposium on Principles of Database
Systems, PODS 2017, 2017

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 8

Graph Entity Dependencies — Example

Example
Graph Pattern @, Graph Entity Dependency
department employee

assigned

Q1 (true — 71 = 22)

If two employees work on the same
project, they are assigned to the

project
same department

assigned
department employee

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr

Graph Entity Dependencies — Example

Example
Graph Pattern Q, Graph Entity Dependency
department department Qs (Zl [name} =2 [name} N zl[nr} =z [nr])

If two departments have the same name,
they also have the same number

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 10

Graph Entity Dependencies — Example

Graph Entity Dependencies

department
department
If two employees work on the name = “IT"
. . o G name = “|T"
same project, they are assigned nr =42 7y
/\ .
to the same department assigned assigned
employee employee
name = "“Lucy” “Alex”
role = "manager” "“developer”
NS~
works_on wot works_on
Y y
B title = "Website Sales” o title = "Payment Proc
due-date =2025-12-10 due-date = 2026-04-28
project project

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 11

Graph Entity Dependencies — Example

Graph Entity Dependencies

department
department
If two employees work on the name = “IT"
. . o G name = “|T"
same project, they are assigned nr =42 7y
/\ .
to the same department assigned assigned
employee employee
» Not satisfied by G X name = "“Lucy” “Alex”
role = "manager” "“developer”
NS~
works_on wot works_on
Y y
B title = "Website Sales” o title = "Payment Proc
due-date =2025-12-10 due-date = 2026-04-28
project project

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 11

Graph Entity Dependencies — Example

Graph Entity Dependencies

department department
If two employees work on the a name — ~|T~] ﬂ_j
. . - name =
same project, they are assigned nr*“i 'y
to the same department assigned assigned
employee employee
» Not satisfied by G X name = "Lucy” “Alex”
role = "manager” “developer”
NS~
works_on wot works_on
If two departments have the 4 y
same name, B title = "Website Sales” o title = "Payment Proc”
due-date =2025-12-10 due-date = 2026-04-28
they also have the same number
project project

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 11

Graph Entity Dependencies — Example

Graph Entity Dependencies

department
department
If two employees work on the name — “IT"
. . - u name = “|T"
same project, they are assigned nr =42 7y
7
to the same department assigned assigned
employee employee
» Not satisfied by G X name = "Lucy” “Alex”
role = "manager” “developer”
works_on works_on
If two departments have the 4 y
same name, P title = “Website Sales” P title= “Payment Proc.”
due-date =2025-12-10 due-date = 2026-04-28
they also have the same number
project project

» Not satisfied by G X

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 11

GEDs vs. QIDs

GEDs vs. CFDs
CFDs can be translated into GEDs

» Every tuple in the database is interpreted as a node
» labelled with the relation it belongs to

» The graph pattern of the GED consists of two disconnect nodes labelled with R and S

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 12

GEDs vs. QIDs

GEDs vs. CFDs
CFDs can be translated into GEDs

» Every tuple in the database is interpreted as a node
» labelled with the relation it belongs to

» The graph pattern of the GED consists of two disconnect nodes labelled with R and S

GEDs vs. MDs

» GEDs do not support similarity operators
» and can therefore not mimic

» But they can be extended accordingly

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 12

Ingredients for the Repair Problem

Ingredients for the Repair Problem

1. Quality dependencies v
» We consider Graph Entity Dependencies
2. A dirty graph database v/

3. A repair model
» What kind of operations are allowed to modify the database?

» Examples: tuple-deletions—tuple-insertions, value modifications
4. A cost model

» the repair should differ minimally
» Examples: number of deletions, edit distance

Goal
A clean graph that satisfies all the dependencies

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr

Repair Model

Repair Model

» We discuss a variation of the V-Repair model, adapted for graphs

» It allows for changing values of properties

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 14

Repair Model

Repair Model

» We discuss a variation of the V-Repair model, adapted for graphs

» It allows for changing values of properties

» It allows for merging nodes
» If two nodes vi, and v, are merged into a new node w,
» then w inherits all outgoing edges from v; and vo,
» and all incoming edges of vi and v, are redirected to w

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 14

Repair Model

Repair Model

v

We discuss a variation of the V-Repair model, adapted for graphs

v

It allows for changing values of properties

v

It allows for merging nodes

» If two nodes vi, and v, are merged into a new node w,
» then w inherits all outgoing edges from v; and vo,
» and all incoming edges of vi and v, are redirected to w

» Labels and edges cannot be changed directly

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 14

Repair Model — Example

department department
a Eimjfz I G name = "|T"
Graph Entity Dependency — 3
. assigned
If two employees work on the assigned employee employee
same project, they are assigned name = “Lucy” “Alex”
to the same department role = "manager” "“developer”
2
» Not satisfied by G X works_on s works_on
Y y
B title = "Website Sales” o title = "Payment Proc
due-date =2025-12-10 due-date = 2026-04-28
project project

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 15

Repair Model — Example

department department
H 2?54:2 I G name = "|T"
Graph Entity Dependency — 3
. assigned
If two employees work on the assigned employee employee
same project, they are assigned name = “Lucy” “Alex”
to the same department role = "manager” "“developer”
o 2
» Not satisfied by G X ""°'k5—°"" b 'W°rks—°"
» To repair Gv we merge vs and Ve B title = “Website Sales” o title = "Payment Proc.”
due-date = 2025-12-10 due-date = 2026-04-28

project project

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 15

Repair Model — Example

department

Graph Entity Dependency

If two employees work on the assigned employee
same project, they are assigned name = “Lucy” name = “Alex”
to the same department role = "manager” role = “developer”
\N"‘Y&/
» Not satisfied by G X ""°'k5—°"" "W°rks—°"
» To repair Gv we merge vs and Ve B title = “Website Sales” o title = "Payment Proc.”
due-date =2025-12-10 due-date = 2026-04-28

project project

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

Ingredients for the Repair Problem

Ingredients for the Repair Problem

1. Quality dependencies v/

» We consider Graph Entity Dependencies
2. A dirty graph database v/
3. A repair model v/

» Modification of property values, merging of nodes

4. A cost model v/

» the repair should differ minimally
» Examples: number of merges, edit distance

Goal
A clean graph that satisfies all the dependencies

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

Chasing Graphs

Recall: Chase Procedures

Idea

» We adapt the (extended) chase procedure for graphs and our repair model

Recall: Chase Procedures

The chase takes as input
» a set X of data quality rules; and
» an input database D,

and, if the chase terminates successfully, then it outputs a database D’ such that D’ =3

@®®® © Christopher Spinrath — christopher.spinrath®@liris.cnrs.fr 17

Recall: Chase Procedures

Idea

» We adapt the (extended) chase procedure for graphs and our repair model

Recall: Chase Procedures

The chase takes as input
» a set X of graph entity dependencies (GEDs); and
» a graph database G,

and, if the chase terminates successfully, then it outputs a clean graph G’ satisfying

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 17

Recall: Chase Procedures

Idea

» We adapt the (extended) chase procedure for graphs and our repair model

Recall: Chase Procedures

The chase takes as input
» a set X of graph entity dependencies (GEDs); and
» a graph database G,

and, if the chase terminates successfully, then it outputs a clean graph G’ satisfying
Recall: Implementation

» The chase procedure can fire a dependency o if o is not satisfied

» o is fired for a specific violation, which is then repaired (unless there is a conflict)

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 17

The Chase for GEDs

Let

o= Q(/\ wi(xi, yi) = ¥(z, U))

i€[1,n]

be a graph entity dependency (GED) with graph pattern Q = (Xg, Eg, Lg)

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 18

The Chase for GEDs

Let
o= Q(/\ wi(xi, yi) = Y(z, U))
i€[1,n]

be a graph entity dependency (GED) with graph pattern Q = (Xg, Eg, Lg)

Firing of a GED

The GED o can be fired on a graph G if there is a match h of @ in G such that
» (G, h(x;), h(yi)) = @i holds for all i € [1, n]
» but (G, h(z), h(u)) = ¢ (z, u) does not hold

@®®® © Christopher Spinrath — christopher.spinrath®@liris.cnrs.fr 18

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G' = G
2. As long as there is

» a GED o € ¥ with consequence ¢(z, u),
» and a match h

for which o can be fired do

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G' = G
2. As long as there is

» a GED o € ¥ with consequence ¢(z, u),
» and a match h

for which o can be fired do

2.1 If ¢(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G' = G
2. As long as there is
» a GED o € ¥ with consequence ¢(z, u),
» and a match h
for which o can be fired do
2.1 If ¢(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)
2.2 If (2, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G' = G
2. As long as there is
» a GED o € ¥ with consequence ¢(z, u),
» and a match h
for which o can be fired do
2.1 If ¢(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)
2.2 If (2, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)
2.3 If 1(z, u) has the form z[A] = u[B] proceed analogously to cases 1 and 2 but set the value to ¢
and abort if the existing property does not have value ¢

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G' = G
2. As long as there is
» a GED o € ¥ with consequence ¢(z, u),
» and a match h
for which o can be fired do
2.1 If ¢(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)
2.2 If (2, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)
2.3 If 1(z, u) has the form z[A] = u[B] proceed analogously to cases 1 and 2 but set the value to ¢

and abort if the existing property does not have value ¢
2.4 If ¢(z,u) has the form z = u and the nodes h(z) and h(u) agree on all common properties and have
the same label, merge h(z) and h(u)

» The new node inherits all properties of h(z) and h(u)

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs

The Chase Procedure for GEDs

1. Initialize G' = G
2. As long as there is
» a GED o € ¥ with consequence ¢(z, u),
» and a match h
for which o can be fired do
2.1 If ¢(z, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)
2.2 If (2, u) has the form z[A] = u[B] and property A of h(z) exists but property B of h(u) does not,
create property B for h(u) and set its value to that of A of h(z)
2.3 If 1(z, u) has the form z[A] = u[B] proceed analogously to cases 1 and 2 but set the value to ¢

and abort if the existing property does not have value ¢
2.4 If ¢(z,u) has the form z = u and the nodes h(z) and h(u) agree on all common properties and have
the same label, merge h(z) and h(u)

» The new node inherits all properties of h(z) and h(u)

2.5 If none of the other cases applies, abort

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 19

The Chase for GEDs — Example

Graph Entity Dependencies

» GED o5:
> GED oy: If two employees work on the same
If two departments have the same name, project, they are assigned to the same
they also have the same number department
department department
name = "IT" o
u e 12 @)
J \ .
assigned assigned
employee employee
name = "Lucy” “Alex”
role = "manager” = “developer”
o~
works_on wot works_on
A\ 4 y
G title = "“Website Sales” o title = "Payment Proc.
due-date =2025-12-10 due-date = 2026-04-28
project project

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 20

The Chase for GEDs — Example

Graph Entity Dependencies

» GED o7:
If two departments have the same name,
they also have the same number

The Chase

1. Fire o1 with a match for v5 and vg
> Set vg[nr] := vs[nr]

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

» GED o5:
If two employees work on the same
project, they are assigned to the same

department
department department
u gl Ao)
nr =42 n‘a:ue =17
A i
assigned assigned
employee employee
name = "Lucy” “Alex”
role = "manager” “developer”
works_on works_on
A\ 4 y
& title = "“Website Sales” o title = "Payment Proc.”
due-date = 2025-12-10 due-date = 2026-04-28
project project

20

The Chase for GEDs — Example

Graph Entity Dependencies

» GED o7:
If two departments have the same name,
they also have the same number

The Chase

1. Fire o1 with a match for v5 and vg

> Set vg[nr] := vs[nr]

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

» GED o5:
If two employees work on the same
project, they are assigned to the same

department
department department
name = "IT" name = "IT"
nr =42 nr =42
A A
assigned assigned
employee employee
name = "Lucy” “Alex”
role = "manager” “developer”
works_on works_on
A\ 4 y
& title = "“Website Sales” o title = "Payment Proc.”
due-date = 2025-12-10 due-date = 2026-04-28
project project

20

The Chase for GEDs — Example

Graph Entity Dependencies

» GED o7:

If two departments have the same name,
they also have the same number

The Chase

1. Fire o1 with a match for v5 and vg
> Set vg[nr] := vs[nr]

2. Fire o9 with a match for v, vg, vq, vo, v3
» Merge vs and v

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

» GED o5:

If two employees work on the same
project, they are assigned to the same

department

department

name = "IT"
nr =42
A

assigned

name = "Lucy”
role = "manager”

works_on

employee

A\ 4

department

name = "IT"
nr =42
7 3
assigned

“Alex”
“developer”

works_on

employee

y
title = "“Website Sales” o title = "Payment Proc.
due-date =2025-12-10 due-date = 2026-04-28
project project

20

The Chase for GEDs — Example

Graph Entity Dependencies

» GED o7:

If two departments have the same name,
they also have the same number

The Chase

1. Fire o1 with a match for v5 and vg
> Set vg[nr] := vs[nr]

2. Fire o9 with a match for v, vg, vq, vo, v3
» Merge vs and v

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

» GED o5:

If two employees work on the same

project, they are assigned to the same
department

department

assigned
employee
name = "Lucy” name = "Alex”
role manager” role = "developer”

works_on works_on

A\ 4 A 4

Pl title = "Website Sales” o title = "Payment Proc.
due-date =2025-12-10 due-date = 2026-04-28

project

n

project

20

The Chase for GEDs — Example

Graph Entity Dependencies

» GED o7:

If two departments have the same name,
they also have the same number

The Chase

1. Fire o1 with a match for v5 and vg
> Set vg[nr] := vs[nr]

2. Fire o9 with a match for v, vg, vq, vo, v3
» Merge vs and v

3. No GED can be fired

» The chase terminates successfully

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

» GED o5:

If two employees work on the same

project, they are assigned to the same
department

department

assigned
employee
name = "Lucy” name = "Alex”
role manager” role = "developer”

works_on works_on

A\ 4 A 4

Pl title = "Website Sales” o title = "Payment Proc.
due-date =2025-12-10 due-date = 2026-04-28

project

n

project

20

Properties of the Chase for Graphs and GEDs

The chase procedure for graphs and GEDs has two important properties

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 21

Properties of the Chase for Graphs and GEDs

The chase procedure for graphs and GEDs has two important properties

Chasing with GEDs is Finite

The chase always terminates after a finite number of steps

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 21

Properties of the Chase for Graphs and GEDs

The chase procedure for graphs and GEDs has two important properties

Chasing with GEDs is Finite

The chase always terminates after a finite number of steps

Chasing with GEDs has the Church-Rosser Property
For all graphs G, and a sets ¥ of GEDs, the chase either

» always returns the same repair for G and X; or
» always aborts due to a conflict

regardless in which order and for which errors GEDs are fired

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 21

Reasoning about GEDs

Reasoning about GEDs: The Satisfiability Problem

The Satisfiability Problem

Input: A finite set X of GEDs
Question: Is there a non-trivial graph G that satisfies all dependencies in 37

Goal
Automatically Verifying that a set of GEDs is consistent

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 22

Reasoning about GEDs: The Satisfiability Problem

The Satisfiability Problem

Input: A finite set X of GEDs
Question: Is there a non-trivial graph G that satisfies all dependencies in 37

Goal

Automatically Verifying that a set of GEDs is consistent

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.4)
The satisfiability problem for GEDs is coNP-complete

» For CFDs in the relational setting, satisfiability is NP-complete

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 22

Reasoning about GEDs: The Satisfiability Problem

The Satisfiability Problem

Input: A finite set X of GEDs
Question: Is there a non-trivial graph G that satisfies all dependencies in 37

Goal
Automatically Verifying that a set of GEDs is consistent

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.4)

The satisfiability problem for GEDs is coNP-complete

» For CFDs in the relational setting, satisfiability is NP-complete

» But in PTIME, if the relational schema does not enforce finite domains for attributes!

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 22

Reasoning about GEDs: The Satisfiability Problem

The Satisfiability Problem

Input: A finite set X of GEDs
Question: Is there a non-trivial graph G that satisfies all dependencies in 37

Goal
Automatically Verifying that a set of GEDs is consistent

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.4)
The satisfiability problem for GEDs is coNP-complete

» For CFDs in the relational setting, satisfiability is NP-complete
» But in PTIME, if the relational schema does not enforce finite domains for attributes!

» Since our graphs have no schema, the difficulty is not inherited from CFDs

@®®® © Christopher Spinrath — christopher.spinrath®@liris.cnrs.fr 22

Reasoning about GEDs: The Implication Problem

The Implication Problem

Input: A finite set ¥ of GEDs, a GED o
Question: Does X imply o7

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 23

Reasoning about GEDs: The Implication Problem

The Implication Problem

Input: A finite set ¥ of GEDs, a GED o
Question: Does X imply o7

Goals
Solving the implication problem allows for
» reducing the number of dependencies

» inferring new knowledge

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 23

Reasoning about GEDs: The Implication Problem

The Implication Problem

Input: A finite set ¥ of GEDs, a GED o
Question: Does X imply o7

Goals
Solving the implication problem allows for
» reducing the number of dependencies

» inferring new knowledge

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.12)
The implication problem for GEDs is NP-complete

» For CFDs in the relational setting, the implication problem is NP-complete

@®®® © Christopher Spinrath — christopher.spinrath®liris.cnrs.fr 23

Reasoning about GEDs: The Error Detection Problem

The Error Detection Problem

Input: A finite set 3 of GEDs, a graph G
Question: Does G not satisfy X7

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 24

Reasoning about GEDs: The Error Detection Problem

The Error Detection Problem

Input: A finite set 3 of GEDs, a graph G
Question: Does G not satisfy X7

Goal

Verify whether a graph satisfies dependencies, or needs to be repaired

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

24

Reasoning about GEDs: The Error Detection Problem

The Error Detection Problem

Input: A finite set 3 of GEDs, a graph G
Question: Does G not satisfy X7

Goal
Verify whether a graph satisfies dependencies, or needs to be repaired

Theorem (Fan and Lu, “Dependencies for Graphs”, Theorem 5.16)
The error detection problem for GEDs is NP-complete, even if G is a tree

» For CFDs in the relational setting, the error detection problem is in PTIME

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 24

The Frontier of Graph Repairs

A Family of Graph Dependencies

Fan and Lu, 2019 Fan, Jin, et al., 2020 Fan, 2022
GFDs positive GARs ————— > GARs
|
|
Fan, Fu, et al., 2023 Fan and Lu, 2019 \J Shimomura et al., 2022
GCRs GEDs GQRs GDCs GDDs GGDs
Fan and Lu, 2019 Fan, Lu, et al., 2019 ﬁie et al., 2019
GKeys NGDs
Fan, Liu, et al., 2020

Fan and Lu, 2019

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 25

A Family of Graph Dependencies

GEDs positive GARs ————> GARs
GEDs GQRs ——> GDCs GDDs

Fan and Lu, 2019
NGDs

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

GGDs

25

Outlook: Property Graphs

{:task}

{:person}

{:works_on}

since =2023-04-02

name = "Alex"
access_level =6

@ {:manages}

v {:document }

a start = 2024-05-10) #pages = 12
due = 2027-05-10 { .taSk} d2

ty

Property Graphs

» Nodes and edges can have multiple labels

» Multi-graphs: there can be more than edge
between two nodes

» Nodes and edges can have properties

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

start =2023-02-01
due = 2026-12-10

{:document, :important}
d #pages = 115
E access_level =4

{:references} {:references}
{;reief on_page =58 on_page = 2

. s #pages = 42
{:document, :important} [

@ {:references}

egces}

26

https://www.iso.org/standard/76120.html

Outlook: Property Graphs

{:task}

{:person}

{:works_on}

since =2023-04-02

name = "Alex"
access_level =6

A 4
start = 2024-05-10
due = 2027-05-10

{:manages}

{:document }

#pages = 12

{ :taSk} 2 access_level =5

Property Graphs

» Nodes and edges can have multiple labels

» Multi-graphs: there can be more than edge
between two nodes

» Nodes and edges can have properties

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

B start =2023-02-01
ol Gue — 2026-12-10

{:document, :important}
d #pages = 115
E access_level =4

3 {:references} {:references}
{.reiereﬂces on_page =58 on_page =2

. s #pages = 42
{:document, :important} [

@ {:references}

» Part of the ISO standard for GQL

» ISO/IEC 39075:2024
» GQL is a query language for property graphs
» Published in April 2024

26

https://www.iso.org/standard/76120.html

Outlook: Property Graphs

{:task}

{:person}

{:works_on}

since =2023-04-02

name = "Alex"
access_level =6

A 4
start = 2024-05-10
due = 2027-05-10

{:manages}

{:document }

#pages = 12

{ :taSk} 2 access_level =5

Property Graphs

» Nodes and edges can have multiple labels

» Multi-graphs: there can be more than edge
between two nodes

» Nodes and edges can have properties

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

B start =2023-02-01
ol Gue — 2026-12-10

{:document, :important}
d #pages = 115
E access_level =4
{:references} {:references}

rs ra
{.reiere“ces} on_page =58 : on_page =2
. s #pages = 42
{:document, :important} [

@ {:references}

» Part of the ISO standard for GQL

» ISO/IEC 39075:2024
» GQL is a query language for property graphs
» Published in April 2024

» More in the “Big Graph Processing Systems”
course in January/February 2026

26

https://www.iso.org/standard/76120.html

Outlook: GQL and PG-Constraints

GDCs PG-Constraints
H FOR x z
and related notions v
ety MATCH (x:city)-[:located in]l->(z:country),
X ocateq 4, country (y:city)-[:located inl->(z)
y — (x #y = x.name # y.name) FILTER x !=y
sciry 1O MANDATORY x.name, y.name

D S D d X=Y . 1= v.
Pattern with variables x,y. z, ... ependency FILTER x.name y .name

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 27

Outlook: GQL and PG-Constraints

GDCs PG-Constraints
H FOR x z
and related notions v
ety MATCH (x:city)-[:located inl->(z:country),
X ocateq 4, countey (y:city)-[:located inl->(z)
, —— (x#y = x.name#y.name) FILTER x != y
wcivy oAt MANDATORY x.name, y.name
—_— Dependency X = Y FILTER x.name != y.name
Pattern with variables x,y, z,...

v/ The satisfiability, validation, and
implication problems have been studied?

+ Data cleaning has been studied® for GDCs
without < and >

X Not a “good” fit for property graphs
» Single labels, no transitivity, etc.

3Fan and Lu, “Dependencies for Graphs”, ACM Transactions on Database Systems, 2019.
3Fan, Lu, et al., “Deducing Certain Fixes to Graphs”, Proceedings of the VLDB Endowment, 2019.

@®®® © Christopher Spinrath — christopher.spinrath®@liris.cnrs.fr 27

Outlook: GQL and PG-Constraints

GDCs PG-Constraints
H OR x z
and related notions FOR x, y.

ety MATCH (x:city)-[:located inl->(z:country),

X ocateq 4, countey (y:city)-[:located inl->(z)

, —— (x#y = x.name#y.name) FILTER x != y

wcivy oAt MANDATORY x.name, y.name
Pam.” Dependency X = Y FILTER x.name != y.name

v/ The satisfiability, validation, and v Designed for property graphs

implication problems have been studied?

+ Data cleaning has been studied® for GDCs
without < and >

Expressive and extensive
» since they are based on GQL

X No formal results
X Not a “good” fit for property graphs

» Single labels, no transitivity, etc.

3Fan and Lu, “Dependencies for Graphs”, ACM Transactions on Database Systems, 2019.
3Fan, Lu, et al., “Deducing Certain Fixes to Graphs”, Proceedings of the VLDB Endowment, 2019.

@®®® © Christopher Spinrath — christopher.spinrath®@liris.cnrs.fr 27

Outlook: GQL and PG-Constraints

GDCGCs PG-Constraints
H OR x z
and related notions FOR %, v,

ety MATCH (x:city)-[:located inl->(z:country),
X Hocateq 4, country (y:city)-[:located in]->(z)
, —— (x#y = x.name#y.name) FILTER x != y
ety 10 MANDATORY x.name, y.name

Pattern with variables x,y, z,... Dependency X = ¥ FILTER x.name != y.name

—_—
v The satisfiability, validation, and v/ Designed for property graphs
implication problems have been studied? ><€

Expressive and extensive
v Data cleaning has been studied® for GDCs —_——

. » since they are based on GQL
without < and >

X No formal results
X Not a “good” fit for property graphs

» Single labels, no transitivity, etc.

3Fan and Lu, “Dependencies for Graphs”, ACM Transactions on Database Systems, 2019.
3Fan, Lu, et al., “Deducing Certain Fixes to Graphs”, Proceedings of the VLDB Endowment, 2019.

@®®® © Christopher Spinrath — christopher.spinrath®@liris.cnrs.fr 27

Dependencies for Path Constraints

{:person}
{:works_on}

since =2023-04-02

name = "Alex"
access_level =6

@ {:manages}
) 4

start = 2024-05-10
due = 2027-05-10

{:document }

#pages = 12

{:task} do

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr

start =202
due

access_level

:document, :important
P!

2026-

{:references}

{:references}
on_page =2

on_page =58

renceﬁ}

(:refe

#pages

{:document, :important} access level — 7

28

Dependencies for Path Constraints

{:person} {:task} {:document, :important}
name = "Alex" @ vorkson} Pl stort =2023-02-01 @ (ireferences) Il #pages =115
_ 1 _ o v —a
access_level =6 since = 2023-04-02 due = 2026-12-10 access_level 4

{ manages } @ \ {:references} {:references}
{:document } {.reie,_-enceﬁ on_page =58 on_page =2
start =2024-05-10 #pages = 12 . s #pages = 42
a due = 2027-05-10 | L:t2sk} 2 {idocunent, :important} W ol o over=7
Constraint

If a person works on a task, which has started and which references directly or indirectly,
an important document, then the person’s access level is at least as high as the (re-
quired) access level of the referenced document.

» This constraint cannot be described by a GED, since it talks about arbitrary length paths

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 28

Data Quality for Graphs
» Graph entity dependencies (GEDs) are a formalism for data quality rules for graphs
» They cover CFDs from the relational setting (and more)
» Graph patterns are used to identify subgraphs
» The chase can be adapted for GEDs

» Research in this area is still ongoing!

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 29

Data Quality for Graphs

» Graph entity dependencies (GEDs) are a formalism for data quality rules for graphs
» They cover CFDs from the relational setting (and more)

» Graph patterns are used to identify subgraphs
» The chase can be adapted for GEDs

» Research in this area is still ongoing!

Take away message
Data quality for graphs: a rich source of prob

lems and challenges

@®®® © Christopher Spinrath — christopher.spinrath@liris.cnrs.fr 29

References

ﬁ Fan, Wenfei. “Big Graphs: Challenges and Opportunities”. In: Proceedings of the VLDB
Endowment 15.12 (2022), pp. 3782-3797. DOI: 10.14778/3554821.3554899.

ﬁ Fan, Wenfei, Wenzhi Fu, Ruochun Jin, Muyang Liu, Ping Lu, and Chao Tian. “Making It Tractable
to Catch Duplicates and Conflicts in Graphs™. In: Proceedings of the ACM on Management of
Data 1.1 (May 26, 2023), pp. 1-28. DOI: 10.1145/3588940.

@ Fan, Wenfei, Ruochun Jin, Muyang Liu, Ping Lu, Chao Tian, and Jingren Zhou. “Capturing
Associations in Graphs". In: Proceedings of the VLDB Endowment 13.11 (2020), pp. 1863-1876.
URL: http://www.vldb.org/pvldb/vol13/p1863-fan.pdf.

@ Fan, Wenfei, Xueli Liu, Ping Lu, and Chao Tian. “Catching Numeric Inconsistencies in Graphs”. In:
ACM Transactions on Database Systems 45.2 (June 30, 2020), pp. 1-47. DoI: 10.1145/3385031.

@ Fan, Wenfei and Ping Lu. “Dependencies for Graphs”. In: Proceedings of the 36th ACM
Symposium on Principles of Database Systems, PODS 2017. Ed. by Emanuel Sallinger,

Jan Van den Bussche, and Floris Geerts. ACM, 2017, pp. 403-416. DOI:
10.1145/3034786.3056114. URL: https://doi.org/10.1145/3034786.3056114.

https://doi.org/10.14778/3554821.3554899
https://doi.org/10.1145/3588940
http://www.vldb.org/pvldb/vol13/p1863-fan.pdf
https://doi.org/10.1145/3385031
https://doi.org/10.1145/3034786.3056114
https://doi.org/10.1145/3034786.3056114

@ Fan, Wenfei and Ping Lu. “Dependencies for Graphs”. In: ACM Transactions on Database Systems
(Feb. 13, 2019), pp. 1-40. pOI: 10.1145/3287285.

@ Fan, Wenfei, Ping Lu, Chao Tian, and Jingren Zhou. “Deducing Certain Fixes to Graphs”. In:
Proceedings of the VLDB Endowment 12.7 (Mar. 2019), pp. 752-765. DOL:
10.14778/3317315.3317318.

Kwashie, Selasi, Lin Liu, Jixue Liu, Markus Stumptner, Jiuyong Li, and Lujing Yang. “Certus: An
Effective Entity Resolution Approach with Graph Differential Dependencies (GDDs)". In:
Proceedings of the VLDB Endowment 12.6 (Feb. 2019), pp. 653-666. DOT:
10.14778/3311880.3311883.

@ Shimomura, Larissa C., Nikolay Yakovets, and George Fletcher. “Reasoning on Property Graphs
with Graph Generating Dependencies”. In: (2022). DOI: 10.48550/ARXIV.2211.00387. URL:
https://arxiv.org/abs/2211.00387 (visited on 03/28/2024).

https://doi.org/10.1145/3287285
https://doi.org/10.14778/3317315.3317318
https://doi.org/10.14778/3311880.3311883
https://doi.org/10.48550/ARXIV.2211.00387
https://arxiv.org/abs/2211.00387

	Chasing Graphs
	Reasoning about GEDs
	The Frontier of Graph Repairs
	References

